6 resultados para Microalgae


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Science of the total environment 405(2008) 278-285

Relevância:

10.00% 10.00%

Publicador:

Resumo:

International Biodeterioration & Biodegradation 64(2010)388 e 396

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada à Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Bioenergia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Partes do presente trabalho foram submetidas para publicação: Subcapítulo 5.1 Graça, S., Sousa, C., Ambrosano, L., Hall, L., Oliveira, A.C., Ribeiro, B., Gouveia, L. (2014); Production of valuable microalgal biomass by treating Urban Wastewater. Submetido Algal Research (Ref. No.: ALGAL-D-14-00148) Subcapítulo 5.7 Batista, A.P., Ambrosano, L., Graça, S., Sousa, C., Marques, P., Ribeiro, B., Botrel, E., Neto, P. e Gouveia, L. (2014); Combining urban wastewater with biohydrogen production - an integrated microalgae-based approach; Bioresource Technology (Ref. No.: BITE-D-14-04819)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of this work is the valorization of residues from agro-industry giving them an added value. The valorization was performed by using a "green" and sustainable solvent - supercritical fluid, in this case carbon dioxide. Two residues and one biomass were used to produce two different final products, thereby emphasizing the versatility of the waste recovery - spent coffee grounds and microalgae Chlorella protothecoides to produce biodiesel, and tomato pomace to extract carotenoids. In the first part of this work it was demonstrated the possibility to obtain a conversion of coffee spent grounds oil into biodiesel, through an enzymatic transesterification reaction, of 98.01% with the following operating conditions: molar ratio oil:methanol 1:24, residence time 0.8 min, pressure 25 MPa, temperature 313,15K. In this first phase, it was also used the microalgae Chlorella protothecoides, a biomass, to produce biodiesel and favorable results were obtained with this green process compared with a traditional process - basic catalysis / acid. In the second part of this work, by an extraction with supercritical CO2 it was obtained 3.38% oil from tomato pomace under the following conditions: pressure 35.1 MPa, temperature 313,15K. It was found that this oil contains various carotenoids: β-carotene, lutein and lycopene. The latter is present in larger amount.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of microbial activity on the deterioration of cultural heritage is a well-recognized global problem. Glazed wall tiles constitute an important part of the worldwide cultural heritage. When exposed outdoors, biological colonization and consequently biodeterioration may occur. Few studies have dealt with this issue, as shown in the literature review on biodiversity, biodeterioration and bioreceptivity of architectural ceramic materials. Due to the lack of knowledge on the biodeteriogens affecting these assets, the characterization of microbial communities growing on Portuguese majolica glazed tiles, from Pena National Palace (Sintra, Portugal) and another from Casa da Pesca (Oeiras, Portugal) was carried out by culture and molecular biology techniques. Microbial communities were composed of microalgae, cyanobacteria, bacteria and fungi, including a new fungal species (Devriesia imbrexigena) described for the first time. Laboratory-based colonization experiments were performed to assess the biodeterioration patterns and bioreceptivity of glazed wall tiles produced in laboratory. Microorganisms previously identified on glazed tiles were inoculated on pristine and artificially aged tile models and incubated under laboratory conditions for 12 months. Phototrophic microorganisms were able to grow into glaze fissures and the tested fungus was able to form oxalates over the glaze. The bioreceptivity of artificially aged tiles was higher for phototrophic microorganisms than pristine tile models. A preliminary approach on mitigation strategies based on in situ application of commercial biocides and titanium dioxide (TiO2) nanoparticles on glazed tiles demonstrated that commercial biocides did not provide long term protection. In contrast, TiO2 treatment caused biofilm detachment. In addition, the use of TiO2 thin films on glazed wall tiles as a protective coating to prevent biological colonization was analysed under laboratorial conditions. Finally, conservation notes on tiles exposed to biological colonization were presented.