12 resultados para Membrane-associated proteins


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Journal of Electroanalytical Chemistry 541 (2003) 153-162

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation is presented to obtain a Master degree in Structural and Functional Biochemistry

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biology

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein Sci. 2009 Mar;18(3):619-28. doi: 10.1002/pro.69.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

J Biol Inorg Chem (2008) 13:1321–1333 DOI 10.1007/s00775-008-0416-1

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biochemistry, 2003, 42 (10), pp 3070–3080 DOI: 10.1021/bi026979d

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A thesis to obtain a Master degree in Structural and Functional Biochemistry

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Sistemas de Bioengenharia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The obligate intracellular bacterium Chlamydia trachomatis is a human pathogen of major public health significance. Strains can be classified into 15 main serovars (A to L3) that preferentially cause ocular infections (A-C), genital infections (D-K) or lymphogranuloma venereum (LGV) (L1-L3), but the molecular basis behind their distinct tropism, ecological success and pathogenicity is not welldefined. Most chlamydial research demands culture in eukaryotic cell lines, but it is not known if stains become laboratory adapted. By essentially using genomics and transcriptomics, we aimed to investigate the evolutionary patterns underlying the adaptation of C. trachomatis to the different human tissues, given emphasis to the identification of molecular patterns of genes encoding hypothetical proteins, and to understand the adaptive process behind the C. trachomatis in vivo to in vitro transition. Our results highlight a positive selection-driven evolution of C. trachomatis towards nichespecific adaptation, essentially targeting host-interacting proteins, namely effectors and inclusion membrane proteins, where some of them also displayed niche-specific expression patterns. We also identified potential "ocular-specific" pseudogenes, and pointed out the major gene targets of adaptive mutations associated with LGV infections. We further observed that the in vivo-derived genetic makeup of C. trachomatis is not significantly compromised by its long-term laboratory propagation. In opposition, its introduction in vitro has the potential to affect the phenotype, likely yielding virulence attenuation. In fact, we observed a "genital-specific" rampant inactivation of the virulence gene CT135, which may impact the interpretation of data derived from studies requiring culture. Globally, the findings presented in this Ph.D. thesis contribute for the understanding of C.trachomatis adaptive evolution and provides new insights into the biological role of C. trachomatishypothetical proteins. They also launch research questions for future functional studies aiming toclarify the determinants of tissue tropism, virulence or pathogenic dissimilarities among C. trachomatisstrains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Staphylococcus aureus (S. aureus) is a major human pathogen that has acquired resistance to practically all classes of β-lactam antibiotics, being responsible of Multidrug resistant S. aureus (MRSA) associated infections both in healthcare (HA-MRSA) and community settings (CA-MRSA). The emergence of laboratory strains with high-resistance (VRSA) to the last resort antibiotic, vancomycin, is a warning of what is to come in clinical strains. Penicillin binding proteins (PBPs) target β-lactams and are responsible for catalyzing the last steps of synthesis of the main component of cell wall, peptidoglycan. As in Escherichia coli, it is suggested that S. aureus uses a multi-protein complex that carries out cell wall synthesis. In the presence of β-lactams, PBP2A and PBP2 perform a joint action to build the cell wall and allow cell survival. Likewise, PBP2 cooperates with PBP4 in cell wall cross-linking. However, an actual interaction between PBP2 and PBP4 and the location of such interaction has not yet been determined. Therefore, investigation of the existence of a PBP2-PBP4 interaction and its location(s) in vivo is of great interest, as it should provide new insights into the function of the cell wall synthesis machinery in S. aureus. The aim of this work was to develop Split-GFPP7 system to determine interactions between PBP2 and PBP4. GFPP7 was split in a strategic site and fused to proteins of interest. When each GFPP7 fragment, fused to proteins, was expressed alone in staphylococcal cells, no fluorescence was detectable. When GFPP7 fragments fused to different peptidoglycan synthesis (PBP2 and PBP4) or cell division (FtsZ and EzrA) proteins were co-expressed together, fluorescent fusions were localized to the septum. However, further analysis revealed that this positive result is mediated by GFPP7 self-association. We then interpret the results in light of such event and provide insights into ways of improving this system.