4 resultados para Materiali compositi, CFRP, Combined Loading Compression (CLC) test method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pavements require maintenance in order to provide good service levels during their life period. Because of the significant costs of this operation and the importance of a proper planning, a pavement evaluation methodology, named Pavement Condition Index (PCI), was created by the U.S. Army Corps of Engineers. This methodology allows for the evaluation of the pavement condition along the life period, generally yearly, with minimum costs and, in this way, it is possible to plan the maintenance action and to adopt adequate measures, minimising the rehabilitation costs. The PCI methodology provides an evaluation based on visual inspection, namely on the distresses observed on the pavement. This condition index of the pavement is classified from 0 to 100, where 0 it is the worst possible condition and 100 the best possible condition. This methodology of pavement assessment represents a significant tool for management methods such as airport pavement management system (APMS) and life-cycle costs analysis (LCCA). Nevertheless, it has some limitations which can jeopardize the correct evaluation of the pavement behavior. Therefore the objective of this dissertation is to help reducing its limitations and make it easier and faster to use. Thus, an automated process of PCI calculation was developed, avoiding the abaci consultation, and consequently, minimizing the human error. To facilitate also the visual inspection a Tablet application was developed to replace the common inspection data sheet and thus making the survey easier to be undertaken. Following, an airport pavement condition was study accordingly with the methodology described at Standard Test Method for Airport Pavement Condition Index Surveys D5340, 2011 where its original condition level is compared with the condition level after iterate possible erroneous considered distresses as well as possible rehabilitations. Afterwards, the results obtained were analyzed and the main conclusions presented together with some future developments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The first part of this research work regards the assessment of the mathematical modelling of reinforced concrete columns confined with carbon fibre (CFRP) sheets under axial loading. The purpose was to evaluate existing analytical models, contribute to possible improvements and choose the best model(s) to be part of a new model for the prediction of the behaviour of confined columns under bending and compression. For circular columns, a wide group of authors have proposed several models specific for FRP-confined concrete. The analysis of some of the existing models was carried out by comparing these with several tested columns. Although several models predict fairly the peak load only few can properly estimate the load-strain and dilation behaviour of the columns. Square columns confined with CFRP show a more complex interpretation of their behaviour. Accordingly, the analysis of two experimental programs was carried out to propose new modelling equations for the whole behaviour of columns. The modelling results show that the analytical curves are in general agreement with the presented experimental curves for a wide range of dimensions. An analysis similar to the one done for circular columns was this turn carried out for square columns. Few models can fairly estimate the whole behaviour of the columns and with less accuracy at all levels when compared with circular columns. The second part of this study includes seven experimental tests carried out on reinforced concrete rectangular columns with rounded corners, different damage condition and with confinement and longitudinal strengthening systems. It was concluded that the use of CFRP confinement is viable and of effective performance enhancement alone and combined with other techniques, maintaining a good ductile behaviour for established threshold displacements. As regards the use of external longitudinal strengthening combined with CFRP confinement, this system is effective for the performance enhancement and viable in terms of execution. The load capacity was increased significantly, preserving also in this case a good ductile behaviour for threshold displacements. As to the numerical nonlinear modelling of the tested columns, the results show a variation of the peak load of 1% to 10% compared with tests results. The good results are partly due to the inclusion of the concrete constitutive model by Mander et al. modified by Faustino, Chastre & Paula taking into account the confinement effect. Despite the reasonable approximation to tests results, the modelling results showed higher unloading, which leads to an overestimate dissipated energy and residualdisplacement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Civil