4 resultados para MUSCLE DEGENERATION
Resumo:
Revista Portuguesa de Pneumologia. VIII(3): 223-235.
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by motor neurons degeneration, which reduces muscular force, being very difficult to diagnose. Mathematical methods are used in order to analyze the surface electromiographic signal’s dynamic behavior (Fractal Dimension (FD) and Multiscale Entropy (MSE)), evaluate different muscle group’s synchronization (Coherence and Phase Locking Factor (PLF)) and to evaluate the signal’s complexity (Lempel-Ziv (LZ) techniques and Detrended Fluctuation Analysis (DFA)). Surface electromiographic signal acquisitions were performed in upper limb muscles, being the analysis executed for instants of contraction for ipsilateral acquisitions for patients and control groups. Results from LZ, DFA and MSE analysis present capability to distinguish between the patient group and the control group, whereas coherence, PLF and FD algorithms present results very similar for both groups. LZ, DFA and MSE algorithms appear then to be a good measure of corticospinal pathways integrity. A classification algorithm was applied to the results in combination with extracted features from the surface electromiographic signal, with an accuracy percentage higher than 70% for 118 combinations for at least one classifier. The classification results demonstrate capability to distinguish members between patients and control groups. These results can demonstrate a major importance in the disease diagnose, once surface electromyography (sEMG) may be used as an auxiliary diagnose method.
Resumo:
The Unfolded Protein Response (UPR) is a signaling pathway that is activated by an accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) that causes ER stress. The activation of the UPR aims to restore ER homeostasis by attenuation of ER client protein translation, increased transcription of ER chaperones and ER associated degradation (ERAD) factors. If ER stress is too long or too strong, cells may die. The main signaling branch of the UPR is mediated by the ER transmembrane protein IRE1 and the transcription factor Xbp1. The active, spliced form of Xbp1 (Xbp1spliced) acts as a transcription factor with protective function against toxic protein aggregation. However, overexpression of Xbp1spliced in the developing Drosophila eye causes degeneration of the eye (“glossy” eye phenotype).(...)