8 resultados para MOLECULAR INTERACTION FIELDS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biology

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The bacterium Geobacter sulfurreducens (Gs) is capable of oxidizing a large variety of compounds relaying electrons out of the cytoplasm and across the membrane in a process designated as extracellular electron transfer. The Gs genome was fully sequenced and a family composed by five periplasmic triheme cytochromes c7 (designated PpcA-E) was identified. These cytochromes play an important role in the reduction of extracellular acceptors. They contain approximately 70 amino acids, three heme groups with bis-histidinyl axial coordination, and share between 57 and 77% sequence identity. The triheme cytochrome PpcA is highly abundant in Gs and is most likely the reservoir of electrons destined for outer surface. In addition to its role in electron transfer pathways this protein can perform e-/H+ energy transduction, a process that is disrupted when the strictly conserved aromatic residue phenylalanine 15 is replaced by a leucine (PpcAF15L). This Thesis focuses on the expression, purification and characterization of these proteins using Nuclear Magnetic Resonance and ultraviolet-visible spectroscopy. The orientations of the heme axial histidine ring planes and the orientation of the heme magnetic axis were determined for each Gs triheme cytochrome. The comparison of the orientations obtained in solution with the crystal structures available showed significant differences. The results obtained provide the paramagnetic constraints to include in the future refinement of the solution structure in the oxidized state. In this work was also determined the solution structure and the pH-dependent conformational changes of the PpcAF15L allowing infer the structural origin for e-/H+ energy transduction mechanism as shown by PpcA. Finally, the backbone and side chain NH signals of PpcA were used to map interactions between this protein and the putative redox partner 9,10-anthraquinone-2,6-disulfonate (AQDS). In this work a molecular interaction was identified for the first time between PpcA and AQDS, constituting the first step toward the rationalization of the Gs respiratory chain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thesis for the Master degree in Structural and Functional Biochemistry

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Bioquímica, Especialidade Bioquímica Estrutural

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Bioquímica – Ramo Bioquímica Estrutural

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to their toxicity, especially their carcinogenic potential, polycyclic aromatic hydrocarbons (PAHs) became priority pollutants in biomonitoring programmes and environmental policy, such as the European Water Framework Directive. The model substances tested in this study, namely benzo[b]fluoranthene (B[b]F), considered potentially carcinogenic to humans and an effector carcinogenic PAH to wildlife, and phenanthrene (Phe), deemed a non-carcinogenic PAH, are common PAHs in coastal waters, owning distinct properties reflected in different, albeit overlapping, mechanisms of toxicity. Still, as for similar PAHs, their interaction effects remain largely unknown. In order to study the genotoxic effects of caused by the interaction of carcinogenic and non-carcinogenic PAHs, and their relation to histopathological alterations, juvenile sea basses, Dicentrarchus labrax, a highly ecologically- and economically-relevant marine fish, were injected with different doses (5 and 10 μg.g-1 fish ww) of the two PAHs, isolated or in mixture, and incubated for 48 h. Individuals injected with B[b]F and the PAH mixture exhibited higher clastogenic/aneugenic effects and DNA strand breakage in blood cells, determined through the erythrocytic nuclear abnormalities (ENA) and Comet assays, respectively. Also, hepatic histopathological alterations were found in all animals, especially those injected with B[b]F and the PAH mixture, relating especially to inflammation. Still, Phe also exhibited genotoxic effects in sea bass, especially in higher doses, revealing a very significant acute effect that was accordant with the Microtox test performed undergone in parallel. Overall, sea bass was sensitive to B[b]F (a higher molecular weight PAH), likely due to efficient bioactivation of the pollutant (yielding genotoxic metabolites and reactive oxygen species), when compared to Phe, the latter revealing a more significant acute effect. The results indicate no significant additive effect between the substances, under the current experimental conditions. The present study highlights the importance of understanding PAH interactions in aquatic organisms, since they are usually present in the aquatic environment in complex mixtures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of the effect of radiation on living tissues is a rather complex task to address mainly because they are made of a set of complex functional biological structures and interfaces. Particularly if one is looking for where damage is taking place in a first stage and what are the underlying reaction mechanisms. In this work a new approach is addressed to study the effect of radiation by making use of well identified molecular hetero-structures samples which mimic the biological environment. These were obtained by assembling onto a solid support deoxyribonucleic acid (DNA) and phospholipids together with a soft water-containing polyelectrolyte precursor in layered structures and by producing lipid layers at liquid/air interface with DNA as subphase. The effects of both ultraviolet (UV) radiation and carbon ions beams were systematically investigated in these heterostructures, namely damage on DNA by means vacuum ultraviolet (VUV), infrared (IR), X-Ray Photoelectron (XPS) and impedance spectroscopy. Experimental results revealed that UV affects furanose, PO2-, thymines, cytosines and adenines groups. The XPS spectrometry carried out on the samples allowed validate the VUV and IR results and to conclude that ionized phosphate groups, surrounded by the sodium counterions, congregate hydration water molecules which play a role of UV protection. The ac electrical conductivity measurements revealed that the DNA electrical conduction is arising from DNA chain electron hopping between base-pairs and phosphate groups, with the hopping distance equal to the distance between DNA base-pairs and is strongly dependent on UV radiation exposure, due loss of phosphate groups. Characterization of DNA samples exposed to a 4 keV C3+ ions beam revealed also carbon-oxygen bonds break, phosphate groups damage and formation of new species. Results from radiation induced damage carried out on biomimetic heterostructures having different compositions revealed that damage is dependent on sample composition, with respect to functional targeted groups and extent of damage. Conversely, LbL films of 1,2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (Sodium Salt) (DPPG) liposomes, alternated with poly(allylamine hydrochloride) (PAH) revealed to be unaffected, even by prolonged UV irradiation exposure, in the absence of water molecules. However, DPPG molecules were damaged by the UV radiation in presence of water with cleavage of C-O, C=O and –PO2- bonds. Finally, the study of DNA interaction with the ionic lipids at liquid/air interfaces revealed that electrical charge of the lipid influences the interaction of phospholipid with DNA. In the presence of DNA in the subphase, the effects from UV irrladiation were seen to be smaller, which means that ionic products from biomolecules degradation stabilize the intact DPPG molecules. This mechanism may explain why UV irradiation does not cause immediate cell collapse, thus providing time for the cellular machinery to repair elements damaged by UV.