17 resultados para Lower Crust
Resumo:
(l) The Pacific basin (Pacific area) may be regarded as moving eastwards like a double zip fastener relative to the continents and their respective plates (Pangaea area): opening in the East and closing in the West. This movement is tracked by a continuous mountain belt, the collision ages of which increase westwards. (2) The relative movements between the Pacific area and the Pangaea area in the W-EfE-W direction are generated by tidal forces (principle of hypocycloid gearing), whereby the lower mantle and the Pacific basin or area (Pacific crust = roof of the lower mantle?) rotate somewhat faster eastwards around the Earth's spin axis relative to the upper mantle/crust system with the continents and their respective plates (Pangaea area) (differential rotation). (3) These relative West to East/East to West displacements produce a perpetually existing sequence of distinct styles of opening and closing oeean basins, exemplified by the present East to West arrangement of ocean basins around the globe (Oceanic or Wilson Cycle: Rift/Red Sea style; Atlantic style; Mediterranean/Caribbean style as eastwards propagating tongue of the Pacific basin; Pacific style; Collision/Himalayas style). This sequence of ocean styles, of which the Pacific ocean is a part, moves eastwards with the lower mantle relative to the continents and the upper-mantle/crust of the Pangaea area. (4) Similarly, the collisional mountain belt extending westwards from the equator to the West of the Pacific and representing a chronological sequence of collision zones (sequential collisions) in the wake of the passing of the Pacific basin double zip fastener, may also be described as recording the history of oceans and their continental margins in the form of successive Wilson Cycles. (5) Every 200 to 250 m.y. the Pacific basin double zip fastener, the sequence of ocean styles of the Wilson Cycle and the eastwards growing collisional mountain belt in their wake complete one lap around the Earth. Two East drift lappings of 400 to 500 m.y. produce a two-lap collisional mountain belt spiral around a supercontinent in one hemisphere (North or South Pangaea). The Earth's history is subdivided into alternating North Pangaea growth/South Pangaea breakup eras and South Pangaea growth/North Pangaea breakup eras. Older North and South Pangaeas and their collisional mountain belt spirals may be reconstructed by rotating back the continents and orogenic fragments of a broken spiral (e.g. South Pangaea, Gondwana) to their previous Pangaea growth era orientations. In the resulting collisional mountain belt spiral, pieced together from orogenic segments and fragments, the collision ages have to increase successively towards the West. (6) With its current western margin orientated in a West-East direction North America must have collided during the Late Cretaceous Laramide orogeny with the northern margin of South America (Caribbean Andes) at the equator to the West of the Late Mesozoic Pacific. During post-Laramide times it must have rotated clockwise into its present orientation. The eastern margin of North America has never been attached to the western margin of North Africa but only to the western margin of Europe. (7) Due to migration eastwards of the sequence of ocean styles of the Wilson Cycle, relative to a distinct plate tectonic setting of an ocean, a continent or continental margin, a future or later evolutionary style at the Earth's surface is always depicted in a setting simultaneously developed further to the West and a past or earlier style in a setting simultaneously occurring further to the East. In consequence, ahigh probability exists that up to the Early Tertiary, Greenland (the ArabiaofSouth America?) occupied a plate tectonic setting which is comparable to the current setting of Arabia (the Greenland of Africa?). The Late Cretaceous/Early Tertiary Eureka collision zone (Eureka orogeny) at the northern margin of the Greenland Plate and on some of the Canadian Arctic Islands is comparable with the Middle to Late Tertiary Taurus-Bitlis-Zagros collision zone at the northern margin of the Arabian Plate.
Resumo:
Revista Española de Paleontologia 19 (2), 229-242
Resumo:
Revista electrónica de Ciências da Terra,http://e-terra.geopor.pt,Geociences on-line journal, Vol. 6, nº1
Resumo:
Rev. Soc. Geol. España, 12(1), ano 1999
Resumo:
Palaeogeography, Palaeoclimatology, Palaeoecology 292, 35–43
Resumo:
The magnetostratigraphy of two sections in early Miocene marine deposits of the Tagus Basin is studied. Thermal demagnetization was used to isolate the primary component of magnetization for 45 samples from the Foz da Fonte section, and for 74 others from Trafaria section. The succession of the polarity zones found in these sections is tentatively correlated with the geomagnetic polarity time scale (GPTS) on the basis of the biostratigraphic data yielded by planktic Foraminifera. The planktic zones and magnetic polarities recognized in these sections can be adequately correlated with the part of the GPTS [table calibrated by BERGGRENET al. (1985)] corresponding to the Anomalies 6 and 5E (Foz da Fonte) and 5D (Trafaria). This correlations suggests ages between 19,35 and 18,14 Ma for Foz da Fonte section, and 17,90 to 16,98 Ma for Trafaria.
Resumo:
(l) The Pacific basin (Pacific area) may be regarded as moving eastwards like a double zip fastener relative to the continents and their respective plates (Pangaea area): opening in the East and closing in the West. This movement is tracked by a continuous mountain belt, the collision ages of which increase westwards. (2) The relative movements between the Pacific area and the Pangaea area in the W-E/E-W direction are generated by tidal forces (principle of hypocycloid gearing), whereby the lower mantle and the Pacific basin or area (Pacific crust = roof of the lower mantle?) rotate somewhat faster eastwards around the Earth's spin axis relative to the upper mantle/crust system with the continents and their respective plates (Pangaea area) (differential rotation). (3) These relative West to East/East to West displacements produce a perpetually existing sequence of distinct styles of opening and closing ocean basins, exemplified by the present East to West arrangement of ocean basins around the globe (Oceanic or Wilson Cycle: Rift/Red Sea style; Atlantic style; Mediterranean/Caribbean style as eastwards propagating tongue of the Pacific basin; Pacific style; Collision/Himalayas style). This sequence of ocean styles, of which the Pacific ocean is a part, moves eastwards with the lower mantle relative to the continents and the upper-mantle/crust of the Pangaea area. (4) Similarly, the collisional mountain belt extending westwards from the equator to the West of the Pacific and representing a chronological sequence of collision zones (sequential collisions) in the wake of the passing of the Pacific basin double zip fastener, may also be described as recording the history of oceans and their continental margins in the form of successive Wilson Cycles. (5) Every 200 to 250 m.y. the Pacific basin double zip fastener, the sequence of ocean styles of the Wilson Cycle and the eastwards growing collisional mountain belt in their wake complete one lap around the Earth. Two East drift lappings of 400 to 500 m.y. produce a two-lap collisional mountain belt spiral around a supercontinent in one hemisphere (North or South Pangaea). The Earth's history is subdivided into alternating North Pangaea growth/South Pangaea breakup eras and South Pangaea growth/North Pangaea breakup eras. Older North and South Pangaeas and their collisional mountain belt spirals may be reconstructed by rotating back the continents and orogenic fragments of a broken spiral (e.g. South Pangaea, Gondwana) to their previous Pangaea growth era orientations. In the resulting collisional mountain belt spiral, pieced together from orogenic segments and fragments, the collision ages have to increase successively towards the West. (6) With its current western margin orientated in a West-East direction North America must have collided during the Late Cretaceous Laramide orogeny with the northern margin of South America (Caribbean Andes) at the equator to the West of the Late Mesozoic Pacific. During post-Laramide times it must have rotated clockwise into its present orientation. The eastern margin of North America has never been attached to the western margin of North Africa but only to the western margin of Europe. (7) Due to migration eastwards of the sequence of ocean styles of the Wilson Cycle, relative to a distinct plate tectonic setting of an ocean, a continent or continental margin, a future or later evolutionary style at the Earth's surface is always depicted in a setting simultaneously developed further to the West and a past or earlier style in a setting simultaneously occurring further to the East. In consequence, ahigh probability exists that up to the Early Tertiary, Greenland (the ArabiaofSouth America?) occupied a plate tectonic setting which is comparable to the current setting of Arabia (the Greenland of Africa?). The Late Cretaceous/Early Tertiary Eureka collision zone (Eureka orogeny) at the northern margin of the Greenland Plate and on some of the Canadian Arctic Islands is comparable with the Middle to Late Tertiary Taurus-Bitlis-Zagros collision zone at the northern margin of the Arabian Plate.
Resumo:
The section at Cristo Rei shows sandy beds with intercalated clayey lenses (IVb division from the Lisbon Miocene series) that correspond to a major regression event dated from between ca. 17.6 and 17 Ma. They also correspond to a distal position (relatively to the typical fluviatile facies in Lisbon), nearer the basin's axis. Geologic data and paleontological analysis (plant fossils, fishes, crocodilians, land mammals) allow the reconstruction of environments that were represented in the concerned area: estuary with channels and ox-bows; upstream, areas occupied by brackish waters where Gryphaea griphoides banks developped; still farther upstream, freshwaters sided by humid forests and low mountain subtropical forests under warm temperate and rainy conditions, as well as not far away, seasonally dry environments (low density tree or shrub cover, or steppe).
Resumo:
Correlation between facies associations (marine, estuarine and distal fluviatile environments) and disconformities, observed between Foz da Fonte (SW of Setúbal Peninsula) and Santa Iria da Azóia (NE of Lisbon) are presented. The precise definition of the marine-continental facies relationships improved very much the chronology of the depositional sequence boundaries. Tectonic and eustatic controls are discussed on the basis of subsidence rates variation.
Resumo:
Eight depositional sequences (DS) delimited by regional disconformities had been recognized in the Miocene of Lisbon and Setúbal Peninsula areas. In the case of the western coast of the Setúbal Peninsula, outcrops consisting of Lower Burdigalian to Lower Tortonian sediments were studied. The stratigraphic zonography and the environmental considerations are mainly supported on data concerning to foraminifera, ostracoda, vertebrates and palynomorphs. The first mineralogical and geochemical data determined for Foz da Fonte, Penedo Sul and Penedo Norte sedimentary sequences are presented. These analytical data mainly correspond to the sediments' fine fractions. Mineralogical data are based on X-ray diffraction (XRD), carried out on both the less than 38 nm and 2 nm fractions. Qualitative and semi-quantitative determinations of clay and non-clay minerals were obtained for both fractions. The clay minerals assemblages complete the lithostratigraphic and paleoenvironmental data obtained by stratigraphic and palaeontological studies. Some palaeomagnetic and isotopic data are discussed and correlated with the mineralogical data. Multivariate data analysis (Principal Components Analysis) of the mineralogical data was carried out using both R-mode and Q-mode factor analysis.
Resumo:
A synthesis about the Neogene and Quaternary of Algarve (Southern Portugal) is presented. New isotopic 87Sr/86Sr ages as well as biostratigraphic data about the Miocene deposits allow to present a new stratigraphic frame for the previously characterized units. The Lagos-Portimão Formation corresponds to deposits of temperate carbonate platform sedimentological type, developed during a long time span (Lower Burdigalian to Upper Serravallian). A major change in sedimentation conditions (carbonate to siliciclastic environments) occurred in the Lower Tortonian with the deposition of yellowish sands. Spongoliths rich in microfossils are represented in Algarve inland. Their age is not well established; calcareous nannofossils indicate the CN5a zone (Upper Serravallian) while foraminifera point out at least Nl6 zone (Lower Tortonian). In the Upper Tortonian, the sedimentation is widespread in Eastern Algarve, related with the Guadalquivir Basin infill. The deposits begin with detrital limestones, locally very rich in Heterostegina, passing to fossiliferous conglomerates and siltstones (Cacela Formation). Coarse-grained conglomerates at Galvana (Faro) pose some age problems. K/Ar age on glauconite indicates 6.72±0.17 Ma. However, glauconites may be reworked from older deposits (Cacela Formation). The Galvana Conglomerate could be related to Pliocene deposits are not well characterized. Olhos de Água sands, with a thin marine intercalation rich in marine vertebrates (fishes, a crocodile, cetaceans, sirenians), may be Upper Pliocene; however, the vertebrates point out to a Serravallian to Tortonian age. 87Sr/86Sr ages on oysters from above the level with vertebrates point out to 3.0(+2.5-1.0) Ma. Similar sand deposits occur at Morgadinho (Luz de Tavira). These sands are overlain by marls, lignite clays, lacustrine limestones and a silty calcareous crust. A small mammals association indicate an age span between Upper Pliocene and Lower Middle Pleistocene (MN17-MN20). A Biharian mammal fauna (Lower Pleistocene) was collected at Algoz in similar deposits. In the present state of knowledge, Morgadinho and Algoz deposits may be correlative.
Resumo:
This paper describes a high-resolution stratigraphic correlation scheme for the early to middle Miocene Lagos-Portimão Formation of central Algarve, southern Portugal. The Lagos Portimão-Formation of central Algarve is a 60 m thick package of horizontally bedded siliciclastics and carbonates. The bryozoan and mollusc dominated biofacies is typical of a shallow marine, warm-temperate climatic environment. We define four stratigraphic marker beds based on biofacies, lithology, and gamma-ray signatures. Marker bed 1 is a reddish shell bed composed predominantly of bivalve shells in various stages of fragmentation. Marker bed 2 is a fossiliferous sandstone / sandy rudstone characterized by bryozoan masses. Marker bed 3 is also a fossiliferous sandstone with abundant larger foraminifers and foliate bryozoans. Marker bed 4 is composed of three distinct layers; two fossiliferous sandstones with an intercalated shell bed. The upper sandstone unit displays thickets of the bryozoan Celleporaria palmate associated with the coral Culizia parasitica. This stratigraphic framework allows to correlate isolated outcrops within the stratigraphic context of the Lagos-Portimão Formation and to establish high resolution chronostratigraphic Sr-isotopic dating.
Resumo:
Silveirinha (Portugal) has produced a diverse herpetofauna. In Europe, it is the only described assemblage of amphibians and squamate reptiles from the base of the Eocene (MP 7). The fauna includes at least two species of amphibians (belonging to the Salamandridae and perhaps the Pelobatidae) and at least 15 species of squamates (at least nine families: Iguanidae, Agamidae, Gekkonidae, one or two families of scincomorphans, Anguidae, ?Varanidae, Amphisbaenidae, Boidae, Tropidophiidae, and likely an indeterminate family of snakes). But, except for the snake Dunnophis matronensis, identifications at species level are not possible. The presence of iguanid lizards and of the snake D. matronensis in the base of the Eocene (MP 7) of Europe is confirmed. The fauna includes several squamates that show close affinities with North American taxa.
Resumo:
The chemical features of the ground water in the Lower Tagus Cenozoic deposits are strongly influenced by lithology, by the velocity and direction of the water movement as well as by the localization of the recharge and discharge zones. The mineralization varies between 80 and 900 mg/l. It is minimal in the recharge zones and in the Pliocene sand and maximum in the Miocene carbonated and along the alluvial valley. Mineralization always reflects the time of permanence, the temperature and the pressure. The natural process of water mineralization is disturbed in agricultural areas because the saline concentration of the infiltration water exceeds that of the infiltrated rainwater. In the discharge zones, the rise of the more mineralized, some times thermal deep waters related to tectonic accidents give rise to anomalies in the distribution of the aquiferous system mineralization model. The diversity of the hydrochemical facies of the ground water may be related to several factors whose identification is some times difficult.
Resumo:
A new Lower Cretaceous (Aptian-Albian) dinosaur tracksite at the Olhos de Água beach is described. It is the first vertebrate fossil finding ever found in the concerned unit, and yielded 128 tracks in 17 trackways within an area of ca. 80 square metres. Three tridactyl footprint morphotypes have been recognized: - Type I ("Iguanodontipus-like") - trackways D, F, K, J and P; - Type 2 (large theropod), although larger in size, typically from a Grallator-like theropod footprint, i.e , A, B, G, H and 0 trackways; - Type 3 (medium size theropod); M is the only track of this type. There are other, poorly preserved, unidentified trackways. The theropod, swinging trackway B was produced by an animal that was limping. The theropod track M starts eastwards but drastically changes westwards, speeding up at the same time; this dinosaur decided to turn around and run in the opposite direction. This site shows three main trackway directions: to the South, to the East, and westwards. Except for the trackway 0, large theropods A, B, G and H walked southwards. Perpendicularly to the se, ornithopods, small theropods and unidentified trackmakers walked towards East (5) and West (7). The segregation oftrackmakers and directions, with large theropod traekways southwards and other dinosaurs' west or eastwards, may mean that large theropods patrolled a walkway area to an important resource, most probably water, often frequented by ornithopods and smaller theropods. There is no evidence of social behavior or gregarism: footprints' overposition shows that the large, southwards walking theropods passed on different occasions. Three trackway sequences can be established by chronologic order.