2 resultados para Learning set


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing use of information and communication technologies (ICT) in diverse professional and personal contexts calls for new knowledge, and a set of abilities, competences and attitudes, for an active and participative citizenship. In this context it is acknowledged that universities have an important role innovating in the educational use of digital media to promote an inclusive digital literacy. The educational potential of digital technologies and resources has been recognized by both researchers and practitioners. Multiple pedagogical models and research approaches have already contributed to put in evidence the importance of adapting instructional and learning practices and processes to concrete contexts and educational goals. Still, academic and scientific communities believe further investments in ICT research is needed in higher education. This study focuses on educational models that may contribute to support digital technology uses, where these can have cognitive and educational relevance when compared to analogical technologies. A teaching and learning model, centered in the active role of the students in the exploration, production, presentation and discussion of interactive multimedia materials, was developed and applied using the internet and exploring emergent semantic hypermedia formats. The research approach focused on the definition of design principles for developing class activities that were applied in three different iterations in undergraduate courses from two institutions, namely the University of Texas at Austin, USA and the University of Lisbon, Portugal. The analysis of this study made possible to evaluate the potential and efficacy of the model proposed and the authoring tool chosen in the support of metacognitive skills and attitudes related to information structuring and management, storytelling and communication, using computers and the internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Search is now going beyond looking for factual information, and people wish to search for the opinions of others to help them in their own decision-making. Sentiment expressions or opinion expressions are used by users to express their opinion and embody important pieces of information, particularly in online commerce. The main problem that the present dissertation addresses is how to model text to find meaningful words that express a sentiment. In this context, I investigate the viability of automatically generating a sentiment lexicon for opinion retrieval and sentiment classification applications. For this research objective we propose to capture sentiment words that are derived from online users’ reviews. In this approach, we tackle a major challenge in sentiment analysis which is the detection of words that express subjective preference and domain-specific sentiment words such as jargon. To this aim we present a fully generative method that automatically learns a domain-specific lexicon and is fully independent of external sources. Sentiment lexicons can be applied in a broad set of applications, however popular recommendation algorithms have somehow been disconnected from sentiment analysis. Therefore, we present a study that explores the viability of applying sentiment analysis techniques to infer ratings in a recommendation algorithm. Furthermore, entities’ reputation is intrinsically associated with sentiment words that have a positive or negative relation with those entities. Hence, is provided a study that observes the viability of using a domain-specific lexicon to compute entities reputation. Finally, a recommendation system algorithm is improved with the use of sentiment-based ratings and entities reputation.