5 resultados para Label propagation
Resumo:
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial Para obtenção do grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Doutor em Nanotecnologias e Nanociências
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
The presented dissertation was developed within a partnership between Nova School of Business and Economics and the Portuguese retailer Sonae MC. The main objective of the study was to develop an analysis for the confectionary category to identify potential development opportunities for new Private Label products. In order to do so, the starting point was to understand how the confectionery market was behaving, followed by and understanding of Continente’s performance in that market. Aiming to point out development opportunities, the analysis was split between the subcategories – Chocolate, Chewing Gums and Sweets. The Subcategory performance was assessed in terms of sales, number of SKU’s, Private Label weight and it market position in terms of share. For the potential development opportunities a comparison between the top selling Branded Product and the competitors’ position was developed, in order to establish a reasonable size and retail price for such products. Key Word: Private Label, Branded Products, Continente, Sonae MC, Retail, SKU’s, Sales, Price, Market Share,
Resumo:
Composite materials have a complex behavior, which is difficult to predict under different types of loads. In the course of this dissertation a methodology was developed to predict failure and damage propagation of composite material specimens. This methodology uses finite element numerical models created with Ansys and Matlab softwares. The methodology is able to perform an incremental-iterative analysis, which increases, gradually, the load applied to the specimen. Several structural failure phenomena are considered, such as fiber and/or matrix failure, delamination or shear plasticity. Failure criteria based on element stresses were implemented and a procedure to reduce the stiffness of the failed elements was prepared. The material used in this dissertation consist of a spread tow carbon fabric with a 0°/90° arrangement and the main numerical model analyzed is a 26-plies specimen under compression loads. Numerical results were compared with the results of specimens tested experimentally, whose mechanical properties are unknown, knowing only the geometry of the specimen. The material properties of the numerical model were adjusted in the course of this dissertation, in order to find the lowest difference between the numerical and experimental results with an error lower than 5% (it was performed the numerical model identification based on the experimental results).