4 resultados para Inward Rectifier
Resumo:
Dissertation presented to obtain the Ph.D. degree in Biology
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
Does return migration affect entrepreneurship? This question has important implications for the debate on the economic development effects of migration for origin countries. The existing literature has, however, not addressed how the estimation of the impact of return migration on entrepreneurship is affected by double unobservable migrant self-selection, both at the initial outward migration and at the final inward return migration stages. This paper uses a representative household survey conducted in Mozambique in order to address this research question. We exploit variation provided by displacement caused by civil war in Mozambique, as well as social unrest and other shocks in migrant destination countries. The results lend support to negative unobservable self-selection at both and each of the initial and return stages of migration, which results in an under-estimation of the effects of return migration on entrepreneurial outcomes when using a ‘naïve’ estimator not controlling for self-selection. Indeed, ‘naïve’ estimates point to a 13 pp increase in the probability of owning a business when there is a return migrant in the household relative to non-migrants only, whereas excluding the double effect of unobservable self-selection, this effect becomes significantly larger - between 24 pp and 29 pp, depending on the method of estimation and source of variation used.
Resumo:
In this thesis a piezoelectric energy harvesting system, responsible for regulating the power output of a piezoelectric transducer subjected to ambient vibration, is designed to power an RF receiver with a 6 mW power consump-tion. The electrical characterisation of the chosen piezoelectric transducer is the starting point of the design, which subsequently presents a full-bridge cross-coupled rectifier that rectifies the AC output of the transducer and a low-dropout regulator responsible for delivering a constant voltage system output of 0.6 V, with low voltage ripple, which represents the receiver’s required sup-ply voltage. The circuit is designed using CMOS 130 nm UMC technology, and the system presents an inductorless architecture, with reduced area and cost. The electrical simulations run for the complete circuit lead to the conclusion that the proposed piezoelectric energy harvesting system is a plausible solution to power the RF receiver, provided that the chosen transducer is subjected to moderate levels of vibration.