10 resultados para Inquiry based teaching of mathematics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciência e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Work presented in the context of the European Master in Computational Logics, as partial requisit for the graduation as Master in Computational Logics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is a contribution to the definition and assessment of structural robustness. Special emphasis is given to reliability of reinforced concrete structures under corrosion of longitudinal reinforcement. On this communication several authors’ proposals in order to define and measure structural robustness are analyzed and discussed. The probabilistic based robustness index is defined, considering the reliability index decreasing for all possible damage levels. Damage is considered as the corrosion level of the longitudinal reinforcement in terms of rebar weight loss. Damage produces changes in both cross sectional area of rebar and bond strength. The proposed methodology is illustrated by means of an application example. In order to consider the impact of reinforcement corrosion on failure probability growth, an advanced methodology based on the strong discontinuities approach and an isotropic continuum damage model for concrete is adopted. The methodology consist on a two-step analysis: on the first step an analysis of the cross section is performed in order to capture phenomena such as expansion of the reinforcement due to the corrosion products accumulation and damage and cracking in the reinforcement surrounding concrete; on the second step a 2D deteriorated structural model is built with the results obtained on the first step of the analysis. The referred methodology combined with a Monte Carlo simulation is then used to compute the failure probability and the reliability index of the structure for different corrosion levels. Finally, structural robustness is assessed using the proposed probabilistic index.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

work presented in the context of the European Master’s program in Computational Logic, as the partial requirement for obtaining Master of Science degree in Computational Logic

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, reducing energy consumption is one of the highest priorities and biggest challenges faced worldwide and in particular in the industrial sector. Given the increasing trend of consumption and the current economical crisis, identifying cost reductions on the most energy-intensive sectors has become one of the main concerns among companies and researchers. Particularly in industrial environments, energy consumption is affected by several factors, namely production factors(e.g. equipments), human (e.g. operators experience), environmental (e.g. temperature), among others, which influence the way of how energy is used across the plant. Therefore, several approaches for identifying consumption causes have been suggested and discussed. However, the existing methods only provide guidelines for energy consumption and have shown difficulties in explaining certain energy consumption patterns due to the lack of structure to incorporate context influence, hence are not able to track down the causes of consumption to a process level, where optimization measures can actually take place. This dissertation proposes a new approach to tackle this issue, by on-line estimation of context-based energy consumption models, which are able to map operating context to consumption patterns. Context identification is performed by regression tree algorithms. Energy consumption estimation is achieved by means of a multi-model architecture using multiple RLS algorithms, locally estimated for each operating context. Lastly, the proposed approach is applied to a real cement plant grinding circuit. Experimental results prove the viability of the overall system, regarding both automatic context identification and energy consumption estimation.