2 resultados para Human interference


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use, manipulation and application of electrical currents, as a controlled interference mechanism in the human body system, is currently a strong source of motivation to researchers in areas such as clinical, sports, neuroscience, amongst others. In electrical stimulation (ES), the current applied to tissue is traditionally controlled concerning stimulation amplitude, frequency and pulse-width. The main drawbacks of the transcutaneous ES are the rapid fatigue induction and the high discomfort induced by the non-selective activation of nervous fibers. There are, however, electrophysiological parameters whose response, like the response to different stimulation waveforms, polarity or a personalized charge control, is still unknown. The study of the following questions is of great importance: What is the physiological effect of the electric pulse parametrization concerning charge, waveform and polarity? Does the effect change with the clinical condition of the subjects? The parametrization influence on muscle recruitment can retard fatigue onset? Can parametrization enable fiber selectivity, optimizing the motor fibers recruitment rather than the nervous fibers, reducing contraction discomfort? Current hardware solutions lack flexibility at the level of stimulation control and physiological response assessment. To answer these questions, a miniaturized, portable and wireless controlled device with ES functions and full integration with a generic biosignals acquisition platform has been created. Hardware was also developed to provide complete freedom for controlling the applied current with respect to the waveform, polarity, frequency, amplitude, pulse-width and duration. The impact of the methodologies developed is successfully applied and evaluated in the contexts of fundamental electrophysiology, psycho-motor rehabilitation and neuromuscular disorders diagnosis. This PhD project was carried out in the Physics Department of Faculty of Sciences and Technology (FCT-UNL), in straight collaboration with PLUX - Wireless Biosignals S.A. company and co-funded by the Foundation for Science and Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extended and networked enterprises distribute the design of products, planning of the production process, and manufacturing regionally if not globally. Employees are therefore confronted with collaborative work over remote sites. A cost effective collaboration depends highly on the organization maintaining a common understanding for this kind of work and a suitable support with information and communication technology. The usual face to face work is going to be replaced at least partly if not totally by computer mediated collaboration. Creating and maintaining virtual teams is a challenge to work conditions as well as technology. New developments on cost-effective connections are providing not only vision and auditory perception but also haptic perception. Research results for improving remote collaboration are presented. Individual, social and cultural aspects are considered as new requirements on the employees of networked and extended enterprises.