3 resultados para Human identification
Resumo:
Dissertação para obtenção do Grau de Doutor em Biologia
Resumo:
Nowadays, reducing energy consumption is one of the highest priorities and biggest challenges faced worldwide and in particular in the industrial sector. Given the increasing trend of consumption and the current economical crisis, identifying cost reductions on the most energy-intensive sectors has become one of the main concerns among companies and researchers. Particularly in industrial environments, energy consumption is affected by several factors, namely production factors(e.g. equipments), human (e.g. operators experience), environmental (e.g. temperature), among others, which influence the way of how energy is used across the plant. Therefore, several approaches for identifying consumption causes have been suggested and discussed. However, the existing methods only provide guidelines for energy consumption and have shown difficulties in explaining certain energy consumption patterns due to the lack of structure to incorporate context influence, hence are not able to track down the causes of consumption to a process level, where optimization measures can actually take place. This dissertation proposes a new approach to tackle this issue, by on-line estimation of context-based energy consumption models, which are able to map operating context to consumption patterns. Context identification is performed by regression tree algorithms. Energy consumption estimation is achieved by means of a multi-model architecture using multiple RLS algorithms, locally estimated for each operating context. Lastly, the proposed approach is applied to a real cement plant grinding circuit. Experimental results prove the viability of the overall system, regarding both automatic context identification and energy consumption estimation.
Resumo:
The obligate intracellular bacterium Chlamydia trachomatis is a human pathogen of major public health significance. Strains can be classified into 15 main serovars (A to L3) that preferentially cause ocular infections (A-C), genital infections (D-K) or lymphogranuloma venereum (LGV) (L1-L3), but the molecular basis behind their distinct tropism, ecological success and pathogenicity is not welldefined. Most chlamydial research demands culture in eukaryotic cell lines, but it is not known if stains become laboratory adapted. By essentially using genomics and transcriptomics, we aimed to investigate the evolutionary patterns underlying the adaptation of C. trachomatis to the different human tissues, given emphasis to the identification of molecular patterns of genes encoding hypothetical proteins, and to understand the adaptive process behind the C. trachomatis in vivo to in vitro transition. Our results highlight a positive selection-driven evolution of C. trachomatis towards nichespecific adaptation, essentially targeting host-interacting proteins, namely effectors and inclusion membrane proteins, where some of them also displayed niche-specific expression patterns. We also identified potential "ocular-specific" pseudogenes, and pointed out the major gene targets of adaptive mutations associated with LGV infections. We further observed that the in vivo-derived genetic makeup of C. trachomatis is not significantly compromised by its long-term laboratory propagation. In opposition, its introduction in vitro has the potential to affect the phenotype, likely yielding virulence attenuation. In fact, we observed a "genital-specific" rampant inactivation of the virulence gene CT135, which may impact the interpretation of data derived from studies requiring culture. Globally, the findings presented in this Ph.D. thesis contribute for the understanding of C.trachomatis adaptive evolution and provides new insights into the biological role of C. trachomatishypothetical proteins. They also launch research questions for future functional studies aiming toclarify the determinants of tissue tropism, virulence or pathogenic dissimilarities among C. trachomatisstrains.