19 resultados para Heat generation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

IEEE International Symposium on Circuits and Systems, MAY 25-28, 2003, Bangkok, Thailand. (ISI Web of Science)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D. degree in Biochemistry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia de Materiais

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Energias Renováveis – Conversão Eléctrica e Utilização Sustentáveis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente, perfil Engenharia Sanitária

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente, perfil Gestão e Sistemas Ambientais

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formulation and use of lime mortars with ceramic particles has, in the past, been a very common technique. Knowledge of such used techniques and materials is fundamental for the successful rehabilitation and conservation of the built heritage. The durability that these mortars have shown encourages the study of the involved mechanisms, so that they may be adapted to the current reality. The considerable amount of waste from old ceramics factories which is sent for disposal might present an opportunity for the production of reliable improved lime mortars. In this paper a number of studies that characterize old building mortars containing ceramic fragments are reviewed. The most important research undertaken on laboratory prepared mortars with several heat treated clays types is presented, specifically with incorporated ceramic waste. Some studies on the pozzolanicity of heat treated clays are examined and the heating temperatures that seem most likely to achieve pozzolanicity are presented. It was verified that some heating temperatures currently used by ceramic industries might correspond to the temperatures that will achieve pozzolanicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cryogen-free superconducting magnet systems have become popular during the last two decades for the simple reason that with the use of liquid helium is rather cumbersome and is a scarce resource. Some available CFMS uses a mechanical cryocooler as cold source of the superconductor magnet. However, the cooling of the sample holder is still made through an open circuit of helium. A thermal management of a completely cryogen-free system is possible to be implemented by using a controlled gas gap heat switch (GGHS) between the cryocooler and the variable temperature insert (VTI). This way it would eliminate the helium open circuit. Heat switches are devices that allow to toggle between two distinct thermal states (ON and OFF state). Several cryogenic applications need good thermal contact and a good thermal insulation at different stages of operation. A versatile GGHS was designed and built with a 100 mm gap and tested with helium as exchange gas. An analytic thermal model was developed and a good agreement with the experimental data was obtained. The device was tested on a crycooler at 4 to 80 K ranges. A 285 mW/K thermal conductance was measured at ON state and 0.09 mW/K at OFF. 3000 ON/OFF thermal conductance ratio was obtained at 4 K with helium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grapevine (Vitis vinifera) is one of most agro-economically important fruit crops worldwide, with a special relevance in Portugal where over 300 varieties are used for wine production. Due to global warming, temperature stress is currently a serious issue affecting crop production especially in temperate climates. Mobile genetic elements such as retrotransposons have been shown to be involved in environmental stress induced genetic and epigenetic modifications. In this study, sequences related to Grapevine Retrotransposon 1 (Gret1) were utilized to determine heat induced genomic and transcriptomic modifications in Touriga Nacional, a traditional Portuguese grapevine variety. For this purpose, growing canes were treated to 42 oC for four hours and leaf genomic DNA and RNA was utilized for various techniques to observe possible genomic alterations and variation in transcription levels of coding and non-coding sequences between non-treated plants and treated plants immediately after heat stress (HS-0 h) or after a 24 hour recovery period (HS-24 h). Heat stress was found to induce a significant decrease in Gret1 related sequences in HS-24 h leaves, indicating an effect of heat stress on genomic structure. In order to identify putative heat induced DNA modifications, genome wide approaches such as Amplified Fragment Length Polymorphism were utilized. This resulted in the identification of a polymorphic DNA fragment in HS-0 h and HS-24 h leaves whose sequence mapped to a genomic region flanking a house keeping gene (NADH) that is represented in multiple copies in the Vitis vinifera genome. Heat stress was also found to affect the transcript levels of various non-coding and gene coding sequences. Accordingly, quantitative real time PCR results established that Gret1 related sequences are up regulated immediately after heat stress whereas the level of transcript of genes involved in identification and repair of double strand breaks are significantly down regulated in HS-0 h plants. Taken together, the results of this work demonstrated heat stress affects both genomic integrity and transcription levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organisms that thrive optimally at temperatures above 80°C are called hyperthermophiles. These prokaryotes have been isolated from a variety of hot environments, such as marine geothermal areas, hence they are usually slightly halophilic. Like other halophiles, marine hyperthermophiles have to cope with fluctuations in the salinity of the external medium and generally use low-molecular mass organic compounds to adjust cell turgor pressure. These compounds can accumulate to high levels without interfering with cell metabolism, thereby deserving the designation of compatible solutes. Curiously, the accumulation of compatible solutes also occurs in response to supraoptimal temperatures.(...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A potentially renewable and sustainable source of energy is the chemical energy associated with solvation of salts. Mixing of two aqueous streams with different saline concentrations is spontaneous and releases energy. The global theoretically obtainable power from salinity gradient energy due to World’s rivers discharge into the oceans has been estimated to be within the range of 1.4-2.6 TW. Reverse electrodialysis (RED) is one of the emerging, membrane-based, technologies for harvesting the salinity gradient energy. A common RED stack is composed by alternately-arranged cation- and anion-exchange membranes, stacked between two electrodes. The compartments between the membranes are alternately fed with concentrated (e.g., sea water) and dilute (e.g., river water) saline solutions. Migration of the respective counter-ions through the membranes leads to ionic current between the electrodes, where an appropriate redox pair converts the chemical salinity gradient energy into electrical energy. Given the importance of the need for new sources of energy for power generation, the present study aims at better understanding and solving current challenges, associated with the RED stack design, fluid dynamics, ionic mass transfer and long-term RED stack performance with natural saline solutions as feedwaters. Chronopotentiometry was used to determinate diffusion boundary layer (DBL) thickness from diffusion relaxation data and the flow entrance effects on mass transfer were found to avail a power generation increase in RED stacks. Increasing the linear flow velocity also leads to a decrease of DBL thickness but on the cost of a higher pressure drop. Pressure drop inside RED stacks was successfully simulated by the developed mathematical model, in which contribution of several pressure drops, that until now have not been considered, was included. The effect of each pressure drop on the RED stack performance was identified and rationalized and guidelines for planning and/or optimization of RED stacks were derived. The design of new profiled membranes, with a chevron corrugation structure, was proposed using computational fluid dynamics (CFD) modeling. The performance of the suggested corrugation geometry was compared with the already existing ones, as well as with the use of conductive and non-conductive spacers. According to the estimations, use of chevron structures grants the highest net power density values, at the best compromise between the mass transfer coefficient and the pressure drop values. Finally, long-term experiments with natural waters were performed, during which fouling was experienced. For the first time, 2D fluorescence spectroscopy was used to monitor RED stack performance, with a dedicated focus on following fouling on ion-exchange membrane surfaces. To extract relevant information from fluorescence spectra, parallel factor analysis (PARAFAC) was performed. Moreover, the information obtained was then used to predict net power density, stack electric resistance and pressure drop by multivariate statistical models based on projection to latent structures (PLS) modeling. The use in such models of 2D fluorescence data, containing hidden, but extractable by PARAFAC, information about fouling on membrane surfaces, considerably improved the models fitting to the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

25th International Cryogenic Engineering Conference and the International Cryogenic Materials Conference in 2014, ICEC 25–ICMC 2014