4 resultados para Generating Relation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A vigilância de efeitos indesejáveis após a vacinação é complexa. Existem vários actores de confundimento que podem dar origem a associações espúrias, meramente temporais mas que podem provocar uma percepção do risco alterada e uma consequente desconfiança generalizada acerca do uso das vacinas. Com efeito as vacinas são medicamentos complexos com características únicas cuja vigilância necessita de abordagens metodológicas desenvolvidas para esse propósito. Do exposto se entende que, desde o desenvolvimento da farmacovigilância se tem procurado desenvolver novas metodologias que sejam concomitantes aos Sistemas de Notificação Espontânea que já existem. Neste trabalho propusemo-nos a desenvolver e testar um modelo de vigilância de reacções adversas a vacinas, baseado na auto-declaração pelo utente de eventos ocorridos após a vacinação e testar a capacidade de gerar sinais aplicando cálculos de desproporção a datamining. Para esse efeito foi constituída uma coorte não controlada de utentes vacinados em Centros de Saúde que foram seguidos durante quinze dias. A recolha de eventos adversos a vacinas foi efectuada pelos próprios utentes através de um diário de registo. Os dados recolhidos foram objecto de análise descritiva e análise de data-mining utilizando os cálculos Proportional Reporting Ratio e o Information Component. A metodologia utilizada permitiu gerar um corpo de evidência suficiente para a geração de sinais. Tendo sido gerados quatro sinais. No âmbito do data-mining a utilização do Information Component como método de geração de sinais parece aumentar a eficiência científica ao permitir reduzir o número de ocorrências até detecção de sinal. A informação reportada pelos utentes parece válida como indicador de sinais de reacções adversas não graves, o que permitiu o registo de eventos sem incluir o viés da avaliação da relação causal pelo notificador. Os principais eventos reportados foram eventos adversos locais (62,7%) e febre (31,4%).------------------------------------------ABSTRACT: The monitoring of undesirable effects following vaccination is complex. There are several confounding factors that can lead to merely temporal but spurious associations that can cause a change in the risk perception and a consequent generalized distrust about the safe use of vaccines. Indeed, vaccines are complex drugs with unique characteristics so that its monitoring requires specifically designed methodological approaches. From the above-cited it is understandable that since the development of Pharmacovigilance there has been a drive for the development of new methodologies that are concomitant with Spontaneous Reporting Systems already in place. We proposed to develop and test a new model for vaccine adverse reaction monitoring, based on self-report by users of events following vaccination and to test its capability to generate disproportionality signals applying quantitative methods of signal generation to data-mining. For that effect we set up an uncontrolled cohort of users vaccinated in Healthcare Centers,with a follow-up period of fifteen days. Adverse vaccine events we registered by the users themselves in a paper diary The data was analyzed using descriptive statistics and two quantitative methods of signal generation: Proportional Reporting Ratio and Information Component. themselves in a paper diary The data was analyzed using descriptive statistics and two quantitative methods of signal generation: Proportional Reporting Ratio and Information Component. The methodology we used allowed for the generation of a sufficient body of evidence for signal generation. Four signals were generated. Regarding the data-mining, the use of Information Component as a method for generating disproportionality signals seems to increase scientific efficiency by reducing the number of events needed to signal detection. The information reported by users seems valid as an indicator of non serious adverse vaccine reactions, allowing for the registry of events without the bias of the evaluation of the casual relation by the reporter. The main adverse events reported were injection site reactions (62,7%) and fever (31,4%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente Perfil de Gestão de Sistemas Ambientais

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clostridium difficile is a gram positive, spore former, anaerobic bacterium that is able to cause infection and disease, with symptoms ranging from mild diarrhea to pseudomembranous colitis, toxic megacolon, sepsis and death. In the last decade new strains have emerged that caused outbreaks of increased disease severity and higher recurrence, morbidity and mortality rates, and C. difficile is now considered both a main nosocomial pathogen associated with antibiotic therapy as well as a major concern in the community.(...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Search is now going beyond looking for factual information, and people wish to search for the opinions of others to help them in their own decision-making. Sentiment expressions or opinion expressions are used by users to express their opinion and embody important pieces of information, particularly in online commerce. The main problem that the present dissertation addresses is how to model text to find meaningful words that express a sentiment. In this context, I investigate the viability of automatically generating a sentiment lexicon for opinion retrieval and sentiment classification applications. For this research objective we propose to capture sentiment words that are derived from online users’ reviews. In this approach, we tackle a major challenge in sentiment analysis which is the detection of words that express subjective preference and domain-specific sentiment words such as jargon. To this aim we present a fully generative method that automatically learns a domain-specific lexicon and is fully independent of external sources. Sentiment lexicons can be applied in a broad set of applications, however popular recommendation algorithms have somehow been disconnected from sentiment analysis. Therefore, we present a study that explores the viability of applying sentiment analysis techniques to infer ratings in a recommendation algorithm. Furthermore, entities’ reputation is intrinsically associated with sentiment words that have a positive or negative relation with those entities. Hence, is provided a study that observes the viability of using a domain-specific lexicon to compute entities reputation. Finally, a recommendation system algorithm is improved with the use of sentiment-based ratings and entities reputation.