2 resultados para General allocation model
Resumo:
One of the objectives of this study is to perform classification of socio-demographic components for the level of city section in City of Lisbon. In order to accomplish suitable platform for the restaurant potentiality map, the socio-demographic components were selected to produce a map of spatial clusters in accordance to restaurant suitability. Consequently, the second objective is to obtain potentiality map in terms of underestimation and overestimation in number of restaurants. To the best of our knowledge there has not been found identical methodology for the estimation of restaurant potentiality. The results were achieved with combination of SOM (Self-Organized Map) which provides a segmentation map and GAM (Generalized Additive Model) with spatial component for restaurant potentiality. Final results indicate that the highest influence in restaurant potentiality is given to tourist sites, spatial autocorrelation in terms of neighboring restaurants (spatial component), and tax value, where lower importance is given to household with 1 or 2 members and employed population, respectively. In addition, an important conclusion is that the most attractive market sites have shown no change or moderate underestimation in terms of restaurants potentiality.
Resumo:
Background: Little is known about the risk of progression to hazardous alcohol use in people currently drinking at safe limits. We aimed to develop a prediction model (predictAL) for the development of hazardous drinking in safe drinkers. Methods: A prospective cohort study of adult general practice attendees in six European countries and Chile followed up over 6 months. We recruited 10,045 attendees between April 2003 to February 2005. 6193 European and 2462 Chilean attendees recorded AUDIT scores below 8 in men and 5 in women at recruitment and were used in modelling risk. 38 risk factors were measured to construct a risk model for the development of hazardous drinking using stepwise logistic regression. The model was corrected for over fitting and tested in an external population. The main outcome was hazardous drinking defined by an AUDIT score >= 8 in men and >= 5 in women. Results: 69.0% of attendees were recruited, of whom 89.5% participated again after six months. The risk factors in the final predictAL model were sex, age, country, baseline AUDIT score, panic syndrome and lifetime alcohol problem. The predictAL model's average c-index across all six European countries was 0.839 (95% CI 0.805, 0.873). The Hedge's g effect size for the difference in log odds of predicted probability between safe drinkers in Europe who subsequently developed hazardous alcohol use and those who did not was 1.38 (95% CI 1.25, 1.51). External validation of the algorithm in Chilean safe drinkers resulted in a c-index of 0.781 (95% CI 0.717, 0.846) and Hedge's g of 0.68 (95% CI 0.57, 0.78). Conclusions: The predictAL risk model for development of hazardous consumption in safe drinkers compares favourably with risk algorithms for disorders in other medical settings and can be a useful first step in prevention of alcohol misuse.