25 resultados para Fractional Differential Equation (FDE)
Resumo:
The basic motivation of this work was the integration of biophysical models within the interval constraints framework for decision support. Comparing the major features of biophysical models with the expressive power of the existing interval constraints framework, it was clear that the most important inadequacy was related with the representation of differential equations. System dynamics is often modelled through differential equations but there was no way of expressing a differential equation as a constraint and integrate it within the constraints framework. Consequently, the goal of this work is focussed on the integration of ordinary differential equations within the interval constraints framework, which for this purpose is extended with the new formalism of Constraint Satisfaction Differential Problems. Such framework allows the specification of ordinary differential equations, together with related information, by means of constraints, and provides efficient propagation techniques for pruning the domains of their variables. This enabled the integration of all such information in a single constraint whose variables may subsequently be used in other constraints of the model. The specific method used for pruning its variable domains can then be combined with the pruning methods associated with the other constraints in an overall propagation algorithm for reducing the bounds of all model variables. The application of the constraint propagation algorithm for pruning the variable domains, that is, the enforcement of local-consistency, turned out to be insufficient to support decision in practical problems that include differential equations. The domain pruning achieved is not, in general, sufficient to allow safe decisions and the main reason derives from the non-linearity of the differential equations. Consequently, a complementary goal of this work proposes a new strong consistency criterion, Global Hull-consistency, particularly suited to decision support with differential models, by presenting an adequate trade-of between domain pruning and computational effort. Several alternative algorithms are proposed for enforcing Global Hull-consistency and, due to their complexity, an effort was made to provide implementations able to supply any-time pruning results. Since the consistency criterion is dependent on the existence of canonical solutions, it is proposed a local search approach that can be integrated with constraint propagation in continuous domains and, in particular, with the enforcing algorithms for anticipating the finding of canonical solutions. The last goal of this work is the validation of the approach as an important contribution for the integration of biophysical models within decision support. Consequently, a prototype application that integrated all the proposed extensions to the interval constraints framework is developed and used for solving problems in different biophysical domains.
Resumo:
Applied Mathematical Modelling, Vol.33
Resumo:
IEE Proceedings - Vision, Image, and Signal Processing, Vol. 147, nº 1
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação.
Resumo:
A brief introduction to the fractional continuous-time linear systems is presented. It will be done without needing a deep study of the fractional derivatives. We will show that the computation of the impulse and step responses is very similar to the classic. The main difference lies in the substitution of the exponential by the Mittag-Leffler function. We will present also the main formulae defining the fractional derivatives.
Resumo:
Fractional central differences and derivatives are studied in this article. These are generalisations to real orders of the ordinary positive (even and odd) integer order differences and derivatives, and also coincide with the well known Riesz potentials. The coherence of these definitions is studied by applying the definitions to functions with Fourier transformable functions. Some properties of these derivatives are presented and particular cases studied.
Resumo:
IEEE CIRCUITS AND SYSTEMS MAGAZINE, Third Quarter
Resumo:
Journal of Vibration and Control, Vol. 14, Nº 9-10
Resumo:
Physics Letters A, vol. 372; Issue 7
Resumo:
Signal Processing, Vol. 86, nº 10
Resumo:
International Journal of Mathematics and Mathematical Sciences, Vol.2006
Resumo:
IET Control Theory & Applications, Vol. 1, Nº 1
Resumo:
Signal Processing, Vol. 83, nº 11
Resumo:
Signal Processing, Vol. 83, nº 11
Resumo:
Nonlinear Dynamics, Vol. 29