16 resultados para Fenton Catalyst
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
A contaminação constitui uma das principais causas de degradação do solo e encontra-se consagrada na Estratégia Temática de Protecção do Solo da Comissão das Comunidades Europeias. Segundo a Agência Europeia do Ambiente (AEA), actualmente, aproximadamente 250000 locais dos 32 países membros da AEA, encontram-se contaminados. As actividades de produção industrial e de serviços, juntamente com a indústria petrolífera constituem, a nível europeu, as principais fontes de contaminação de solos, atingindo 53% das actividades geradoras de contaminação. Para minimizar os impactes ambientais associados à contaminação de solos, as abordagens de avaliação e remediação têm evoluído no sentido de desenvolver ferramentas para a avaliação do risco de contaminação e técnicas de remediação com maior relação custo-benefício. Procura-se, por um lado, uma abordagem de gestão do risco face ao tipo de ocupação do solo, principalmente e, por outro lado, soluções de remediação com valorização económica do local. Neste trabalho pretende-se analisar a problemática da contaminação de solos por hidrocarbonetos, quer na fase de avaliação, quer na de remediação. Para tal, é apresentado o caso de estudo de uma contaminação do solo numa instalação de armazenagem de lubrificantes da empresa Total Portugal Petróleos SA, onde é analisada a fase de avaliação e remediação adoptada. Neste caso de estudo foi identificada uma contaminação no solo por hidrocarbonetos de cadeias longas (predominantes em lubrificantes), que se propagou para além dos limites da instalação de armazenagem. Foi seguida uma das abordagens do referencial de Ontario “Guideline for Use at Contaminated Sites in Ontario”, a de avaliação de risco específica para o local. De acordo com a aplicação desta abordagem, conclui-se que a zona contaminada, para um uso industrial, não apresenta um risco inaceitável para o solo e águas subterrâneas. Contudo, a zona mais afectada foi removida (96,7 t) e, posteriormente, encaminhada como resíduo para destino adequado, em função da sua tipologia. Foi, ainda, aplicado um oxidante (Reactivo Fenton) nas paredes da zona escavada para favorecer a degradação dos hidrocarbonetos remanescentes no solo. A zona escavada foi preenchida com outro solo, onde foi garantida a isenção de contaminantes, em particular hidrocarbonetos.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquimica
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Dissertação para obtenção do Grau de Mestre em Mestrado Integrado de Engenharia do Ambiente, perfil Engenharia Sanitária
Resumo:
Using a green methodology, 17 different poly(2-oxazolines) were synthesized starting from four different oxazoline monomers. The polymerization reactions were conducted in supercritical carbon dioxide under a cationic ring-opening polymerization (CROP) mechanism using boron trifluoride diethyl etherate as the catalyst. The obtained living polymers were then end-capped with different types of amines, in order to confer them antimicrobial activity. For comparison, four polyoxazolines were end-capped with water, and by their hydrolysis the linear poly(ethyleneimine) (LPEI) was also produced. After functionalization the obtained polymers were isolated, purified and characterized by standard techniques (FT-IR, NMR, MALDI-TOF and GPC). The synthesized poly(2-oxazolines) revealed an unusual intrinsic blue photoluminescence. High concentration of carbonyl groups in the polymer backbone is appointed as a key structural factor for the presence of fluorescence and enlarges polyoxazolines’ potential applications. Microbiological assays were also performed in order to evaluate their antimicrobial profile against gram-positive Staphylococcus aureus NCTC8325-4 and gram-negative Escherichia coli AB1157 strains, two well known and difficult to control pathogens. The minimum inhibitory concentrations (MIC)s and killing rates of three synthesized polymers against both strains were determined. The end-capping with N,N-dimethyldodecylamine of living poly(2- methyl-2-oxazoline) and poly(bisoxazoline) led to materials with higher MIC values but fast killing rates (less than 5 minutes to achieve 100% killing for both bacterial species) than LPEI, a polymer which had a lower MIC value, but took a longer time to kill both E.coli and S.aureus cells. LPEI achieved 100% killing after 45 minutes in contact with E. coli and after 4 hours in contact with S.aureus. Such huge differences in the biocidal behavior of the different polymers can possibly underlie different mechanisms of action. In the future, studies to elucidate the obtained data will be performed to better understand the killing mechanisms of the polymers through the use of microbial cell biology techniques.
Resumo:
Increasingly stringed regulations for diesel engine emissions have a significant impact on the required efficiency of DOC. Lowered DOC oxidation efficiency due to thermal aging effects influences the efficiency of the exhaust aftertreatment systems downstream of the DOC. In this work carried out in the Jean Le Rond d’Alembert Institute the effect of hydrothermal aging on the reactivity and structure of a commercial DOC was investigated. The characterization of the catalytic performance was carried out on a synthetic gas bench using carrots catalyst under conditions close to the realistic conditions i.e. using a synthetic gas mixture, representative of the exhaust gases from diesel engines. Different structural characterization techniques were performed: textural and morphological proprieties were analyzed by BET and TEM, the characterization of the presented crystallographic phases was performed by DRX and the determination of the number of reducible species was possible by TPR. TEM results shown, an increase of the metal particle size with the aging caused by the agglomeration of metal particles, revealing the presence of metal sintering. DRX results also suggest the presence of support sintering. Furthermore, DRX and BET results unexpectedly reveal that the most drastic aging conditions used actually activated the catalyst surface. As expected, the aging affected negatively the catalyst performance on the oxidation of methane and CO, however an improvement of the NO oxidation performance with the aging was observed. Nevertheless, for the aging conditions used, catalytic activity results show that the influence of aging in DOC performance was not significant, and therefore, more drastic aging conditions must be used.
Resumo:
Ionic Liquids (ILs) belong to a class of compounds with unusual properties: very low vapour pressure; high chemical and thermal stability and the ability to dissolve a wide range of substances. A new field in research is evaluating the possibility to use natural chiral biomolecules for the preparation of chiral ionic liquids (CILs). This important challenge in synthetic chemistry can open new avenues of research in order to avoid some problems related with the intrinsic biodegradability and toxicity associated to conventional ILs. The research work developed aimed for the synthesis of CILs, their characterization and possible applications, based on biological moieties used either as chiral cations or anions, depending on the synthetic manipulation of the derivatives. Overall, a total of 28 organic salts, including CILs were synthesized: 9 based on L-cysteine derivatives, 12 based on L-proline, 3 based on nucleosides and 4 based on nucleotides. All these new CILs were completely characterized and their chemical and physical properties were evaluated. Some CILs based on L-cysteine have been applied for discrimination processes, including resolution of racemates and as a chiral catalyst for asymmetric Aldol condensation. L-proline derived CILs were also studied as chiral catalysts for Michael reaction. In parallel, the interactions of macrocyclic oligosugars called cyclodextrins (CDs) with several ILs were studied. It was possible to improve the solubility of CDs in water and serum. Additionally, fatty acids and steroids showed an increase in water solubility when ILs-CDs systems were used. The development of efficient and selective ILs-CDs systems is indispensable to expand the range of their applications in host-guest interactions, drug delivery systems or catalytic reactions. Novel salts derived from nucleobases were used in order to enhance the fluorescence in aqueous solution. Additionally, preliminary studies regarding ethyl lactate as an alternative solvent for asymmetric organocatalysis were performed.
Resumo:
O adequado tratamento da água residual revela-se de extrema importância na preservação dos recursos naturais e da qualidade de vida. Esse tratamento é caracterizado pela produção de subprodutos que incluem resíduos removidos da água residual e lama produzida no tratamento da mesma. Ao longo do tempo, as directrizes europeias têm vindo a ser cada vez mais restritivas quanto aos valores limite que determinam a qualidade de emissão da água residual ou de deposição da lama, por forma a minimizar os impactes negativos no local de recepção dos mesmos e redução dos custos de transporte, no caso da lama, pelo que a ETAR deve ser planeada de forma a garantir o cumprimento da legislação em vigor, de acordo com a qualidade da água residual afluente à estação. O tratamento na estação divide-se em linha de fase líquida e sólida. No tratamento convencional da fase sólida, a lama é tratada segundo a sequência de etapas espessamento, estabilização e desidratação. Nesta dissertação será dada especial relevância à linha de fase sólida, com o intuito de apresentar, caracterizar e comparar as tecnologias (além do tratamento convencional) que se encontram em fase experimental ou já implantadas em ETAR e têm como objectivo a redução do volume da lama produzida. Será desenvolvida uma aplicação informática de apoio à decisão quanto à tecnologia indicada, de acordo com as variáveis seleccionadas pelo utilizador. As tecnologias dividem-se em: processos biológicos, hidrólise, oxidação avançada, química, térmica e mecânica. Nos biológicos a redução do volume da lama pode ser garantida pela predação dos microrganismos, pela manutenção/inibição do metabolismo e pela alteração/introdução de um reactor biológico na estação. A hidrólise é optimizada após doseamento de enzimas ou por aumento da temperatura. A oxidação avançada é caracterizada pelas tecnologias de ozonização, processo de Fenton, oxidação por ar húmido e oxidação electroquímica. A tecnologia química depende da adição de reagente ácido, alcalino ou outro. A tecnologia mecânica abrange a sonificação, o moinho de rotação, o reactor de homogeneização, a aplicação de campo eléctrico, a aplicação de radiação gama, recurso a técnicas centrífugas e aplicação de pressão na lama. A elevação da temperatura de reacção por meio convencional, por aplicação de radiação de micro-ondas ou garantindo o ciclo de congelamento/aquecimento pertencem à tecnologia térmica. Estas tecnologias podem ser aplicadas numa fase anterior ou posterior da estabilização da lama por forma a melhorar a biodegradabilidade dos compostos orgânicos e reduzir o número de microrganismos viáveis. As tecnologias actuam por meio de libertação de energia, radiação ou pressão no sentido de garantir os objectivos descritos e podem ser aplicadas individualmente ou combinadas (sistema híbrido). Assim o consumo energético, o incremento de matéria orgânica e a capacidade de redução da quantidade de lama são factores que devem ser considerados na escolha da melhor tecnologia que se adequa a cada ETAR.
Resumo:
New emerging contaminants could represent a danger to the environment and Humanity with repercussions not yet known. One of the major worldwide pharmaceutical and personal care productions are antimicrobials products, triclosan, is an antimicrobial agent present in most products. Despite the high removal rate of triclosan present in wastewater treatments, triclosan levels are on the rise in the environment through disposal of wastewater effluent and use of sewage sludge in land application. Regulated in the EC/1272/2008 (annex VI, table 3.1), this compound is considered very toxic to aquatic life and it has been reported that photochemical transformation of triclosan produces dioxins. In the current work it was defined three objectives; determination of the most efficient process in triclosan degradation, recurring to photochemical degradation methods comparing different sources of light; identification of the main by-products formed during the degradation and the study of the influence of the Fenton and photo-Fenton reaction. Photochemical degradation methods such as: photocatalysis under florescent light (UV), photocatalysis under visible light (sunlight), photocatalysis under LEDs, photo-Fenton and Fenton reaction have been compared in this work. The degradation of triclosan was visualized through gas chromatography/mass spectrometry (GC/MS). In this study photo-Fenton reaction has successfully oxidized triclosan to H2O and CO2 without any by-products within 2 hours. Photocatalysis by titanium dioxide (TiO2) under LEDs was possible, having a degradation rate of 53% in an 8 hours essay. The degradation rate of the Fenton reaction, UV light and sunlight showed degradation between 90% and 95%. The results are reported to the data observed without statistic support, since this was not possible during the work period. Hydroquinone specie and 2,4-dichlorophenol by-products were identified in the first hour of photocatalysis by UV. A common compound, possibly identified has C7O4H , was present at the degradation by UV, sunlight and LEDs and was concluded to be a contaminant. In the future more studies in the use of LEDs should be undertaken given the advantages of long durability and low consumption of energy of these lamps and that due to their negative impact on the environment fluorescent lamps are being progressively made unavailable by governments, requiring new solutions to be found. Fenton and photo-Fenton reactions can also be costly processes given the expensive reagents used.
Resumo:
With the projection of an increasing world population, hand-in-hand with a journey towards a bigger number of developed countries, further demand on basic chemical building blocks, as ethylene and propylene, has to be properly addressed in the next decades. The methanol-to-olefins (MTO) is an interesting reaction to produce those alkenes using coal, gas or alternative sources, like biomass, through syngas as a source for the production of methanol. This technology has been widely applied since 1985 and most of the processes are making use of zeolites as catalysts, particularly ZSM-5. Although its selectivity is not especially biased over light olefins, it resists to a quick deactivation by coke deposition, making it quite attractive when it comes to industrial environments; nevertheless, this is a highly exothermic reaction, which is hard to control and to anticipate problems, such as temperature runaways or hot-spots, inside the catalytic bed. The main focus of this project is to study those temperature effects, by addressing both experimental, where the catalytic performance and the temperature profiles are studied, and modelling fronts, which consists in a five step strategy to predict the weight fractions and activity. The mind-set of catalytic testing is present in all the developed assays. It was verified that the selectivity towards light olefins increases with temperature, although this also leads to a much faster catalyst deactivation. To oppose this effect, experiments were carried using a diluted bed, having been able to increase the catalyst lifetime between 32% and 47%. Additionally, experiments with three thermocouples placed inside the catalytic bed were performed, analysing the deactivation wave and the peaks of temperature throughout the bed. Regeneration was done between consecutive runs and it was concluded that this action can be a powerful means to increase the catalyst lifetime, maintaining a constant selectivity towards light olefins, by losing acid strength in a steam stabilised zeolitic structure. On the other hand, developments on the other approach lead to the construction of a raw basic model, able to predict weight fractions, that should be tuned to be a tool for deactivation and temperature profiles prediction.
Resumo:
Nature has developed strategies to present us with a wide variety of colours, from the green of leaves to the bright colours seen in flowers. Anthocyanins are between these natural pigments that are responsible for the great diversity of colours seen in flowers and fruits. Anthocyanins have been used to sensitize titanium dioxide (TiO2) in Dye-Sensitized Solar Cells (DSSCs). DSSCs have become one of the most popular research topic in photovoltaic cells due to their low production costs when compared to other alternatives. DSSCs are inspired in what happens in nature during photosynthesis. A primary charge separation is achieved by means of a photoexcited dye capable of performing the electron injection into the conduction band of a wide band-gap semiconductor, usually TiO2. With this work we aimed to synthesize a novel mesoporous TiO2 structure as the semiconductor in order to increase the dye loading. We used natural occurring dyes such as anthocyanins and their synthetic flavylium relatives, as an alternative to the widely used metal complexes of Ru(II) which are expensive and are environmentally unsafe. This offers not only the chance to use safer dyes for DSSCs, but also to take profit of waste biological products, such as wine and olive oil production residues that are heavily loaded with anthocyanin dyes. We also performed a photodegradation study using TiO2 as the catalyst to degrade dye contaminants, such as those from the wine production waste, by photo-irradiation of the system in the visible region of the light spectrum. We were able to succeed in the synthesis of mesoporous TiO2 both powder and thin film, with a high capacity to load a large amount of dye. We proved the concept of photodegradation using TiO2 as catalyst. And finally, we show that wine production waste is a possible dye source to DSSCs application.
Resumo:
According to a recent Eurobarometer survey (2014), 68% of Europeans tend not to trust national governments. As the increasing alienation of citizens from politics endangers democracy and welfare, governments, practitioners and researchers look for innovative means to engage citizens in policy matters. One of the measures intended to overcome the so-called democratic deficit is the promotion of civic participation. Digital media proliferation offers a set of novel characteristics related to interactivity, ubiquitous connectivity, social networking and inclusiveness that enable new forms of societal-wide collaboration with a potential impact on leveraging participative democracy. Following this trend, e-Participation is an emerging research area that consists in the use of Information and Communication Technologies to mediate and transform the relations among citizens and governments towards increasing citizens’ participation in public decision-making. However, despite the widespread efforts to implement e-Participation through research programs, new technologies and projects, exhaustive studies on the achieved outcomes reveal that it has not yet been successfully incorporated in institutional politics. Given the problems underlying e-Participation implementation, the present research suggested that, rather than project-oriented efforts, the cornerstone for successfully implementing e-Participation in public institutions as a sustainable added-value activity is a systematic organisational planning, embodying the principles of open-governance and open-engagement. It further suggested that BPM, as a management discipline, can act as a catalyst to enable the desired transformations towards value creation throughout the policy-making cycle, including political, organisational and, ultimately, citizen value. Following these findings, the primary objective of this research was to provide an instrumental model to foster e-Participation sustainability across Government and Public Administration towards a participatory, inclusive, collaborative and deliberative democracy. The developed artefact, consisting in an e-Participation Organisational Semantic Model (ePOSM) underpinned by a BPM-steered approach, introduces this vision. This approach to e-Participation was modelled through a semi-formal lightweight ontology stack structured in four sub-ontologies, namely e-Participation Strategy, Organisational Units, Functions and Roles. The ePOSM facilitates e-Participation sustainability by: (1) Promoting a common and cross-functional understanding of the concepts underlying e-Participation implementation and of their articulation that bridges the gap between technical and non-technical users; (2) Providing an organisational model which allows a centralised and consistent roll-out of strategy-driven e-Participation initiatives, supported by operational units dedicated to the execution of transformation projects and participatory processes; (3) Providing a standardised organisational structure, goals, functions and roles related to e-Participation processes that enhances process-level interoperability among government agencies; (4) Providing a representation usable in software development for business processes’ automation, which allows advanced querying using a reasoner or inference engine to retrieve concrete and specific information about the e-Participation processes in place. An evaluation of the achieved outcomes, as well a comparative analysis with existent models, suggested that this innovative approach tackling the organisational planning dimension can constitute a stepping stone to harness e-Participation value.
Valorization of olive pomace through combination of biocatalysis with supercritical fluid technology
Resumo:
A supercritical carbon dioxide (scCO2) based oil extraction method was implemented on olive pomace (alperujo), and an oil yield of 25,5 +/- 0,8% (goil/gdry residue) was obtained. By Soxhlet extraction with hexane, an oil extraction yield of 28,9 +/- 0,8 % was obtained, which corresponds to an efficiency of 88,4 +/- 4,8 % for the supercritical method. The scCO2 extraction process was optimized for operating conditions of 50 MPa and 348,15 K, for which an oil loading of 32,60 g oil/kg CO2 was calculated. As a proof of concept, olive pomace was used as feedstock for biodiesel production, in a process combining the use of lipase as a catalyst with the use of scCO2 as a solvent, and integrating the steps of oil extraction, oil to biodiesel transesterification and subsequent separation of the latter. In the conducted experiments, FAME (fatty acid methyl ester) purities of 90% were obtained, with the following operating parameters: an oil:methanol molar ratio of 1:24; a residence time of 7,33 and 11,6 mins; a pressure of 40 MPa; a temperature of 313,15 K; and Lipozyme (Mucor miehei; Sigma-Aldritch) as an enzyme. However, oscillations of FAME purity were registered throughout the experiments, which could possibly be due to methanol accumulation in the enzymatic reactor. Finally, the phenolic content of olive pomace, and the effect of the drying process – oven or freeze-drying – and the extraction methods – hydro-alcoholic method and supercritical method – on the phenolic content were analysed. It was verified that the oven-drying process on the olive pomace preserved 90,1 +/- 3,6 % of the total phenolic content. About 62,3 +/- 5,53% of the oven-dried pomace phenolic content was extracted using scCO2 at 60 MPa and 323,15 K. Seven individual phenols – hydroxytyrosol, tyrosol, oleuropein, quercetin, caffeic acid, ferulic acid and p-coumaric acid – were identified and quantified by HPLC.
Resumo:
Globalization brought some deep changes to the world (dis)order. Nowadays, more than in other moment in history, we are closer to the ones physically far, living in “global village” called by Marshall McLuhan (1962). The concepts and premises built in this new order, have totally broken with the ones that “came out from Westphalia”, which had last to the end of the cold war, like, for example, the concept of security. Since then, security has been facing one of its biggest transformations ever, completely disrupting the state border based idea and starting to be extended to other domains, as human, economic, environmental and IT security, among others. In this global and interdependent environment, “new” threats and risks have raised, which are demanding a comprehensive approach from the States, international organizations and other actors, to allow the analysis and understanding its impacts on the various society sectors and orders. Inside the enormous challenges to the global security, it is important to regard the organized crime, which covers, by itself, a set of threats and risks, enhanced by its connection to other types of criminality, such as terrorism. The goals pursued and the tactics used by criminal organizations during the perpetration of illegal activities, specially the drug smuggling, have impact in an wide spectrum of the social, economic financial and politic dimensions, which should not be underestimated, otherwise our own security may be compromised. Therefore, the current investigation intends to be an important catalyst to the idea debate inside security scope, through the analysis of the organized crime and the drug smuggling, adding to a discussion of this issue, which should be deeper and holistic, aiming a better understanding of the challenges provided by our society.