13 resultados para Fe3 immobilized


Relevância:

10.00% 10.00%

Publicador:

Resumo:

International Biodeterioration & Biodegradation 64(2010)388 e 396

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation presented to obtain a Master degree in Biotechnology at the Universidade Nova de Lisboa, Faculdade de Cincias e Tecnologia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertao apresentada para a obteno do grau de doutor em Bioqumica pela Universidade Nova de Lisboa, Faculdade de Cincias e Tecnologia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertao apresentada na Faculdade de Cincias e Tecnologia da Universidade Nova de Lisboa para obteno do grau de Mestre em BioOrgnica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis submitted to the Universidade Nova de Lisboa, Faculdade de Cincias e Tecnologia, for the degree of Doctor of Philosophy in Biochemistry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertao para obteno do Grau de Doutor em Qumica Sustentvel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ligand K-edge XAS of an [Fe3S4]0 model complex is reported. The pre-edge can be resolved into contributions from the 2Ssulfide, 3Ssulfide, and Sthiolate ligands. The average ligand-metal bond covalencies obtained from these pre-edges are further distributed between Fe3+ and Fe2.5+ components using DFT calculations. The bridging ligand covalency in the [Fe2S2]+ subsite of the [Fe3S4]0 cluster is found to be significantly lower than its value in a reduced [Fe2S2] cluster (38% vs 61%, respectively). This lowered bridging ligand covalency reduces the superexchange coupling parameter J relative to its value in a reduced [Fe2S2]+ site (-146 cm-1 vs -360 cm-1, respectively). This decrease in J, along with estimates of the double exchange parameter B and vibronic coupling parameter 2/k-, leads to an S ) 2 delocalized ground state in the [Fe3S4]0 cluster. The S K-edge XAS of the protein ferredoxin II (Fd II) from the D. gigas active site shows a decrease in covalency compared to the model complex, in the same oxidation state, which correlates with the number of H-bonding interactions to specific sulfur ligands present in the active site. The changes in ligand-metal bond covalencies upon redox compared with DFT calculations indicate that the redox reaction involves a two-electron change (one-electron ionization plus a spin change of a second electron) with significant electronic relaxation. The presence of the redox inactive Fe3+ center is found to decrease the barrier of the redox process in the [Fe3S4] cluster due to its strong antiferromagnetic coupling with the redox active Fe2S2 subsite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertao para obteno do Grau de Mestre em Biotecnologia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation for the Master degree in Biotechnology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation to obtain a Master Degree in Molecular Genetics and Biomedicine at Faculty of Sciences and Technology,Universidade Nova de Lisboa

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertao apresentada para a obteno do Grau de Mestre em Biotecnologia, pela Universidade Nova de Lisboa, Faculdade de Cincias e Tecnologia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertao para obteno do Grau de Mestre em Engenharia Qumica e Bioqumica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the work presented in this thesis was the development of an innovative approach for the separation of enantiomers of secondary alcohols, combining the use of an ionic liquid (IL) - both as solvent for conducting enzymatic kinetic resolution and as acylating agent - with the use of carbon dioxide (CO2) as solvent for extraction. Menthol was selected for testing this reaction/separation approach due to the increasing demand for this substance, which is widely used in the pharmaceutical, cosmetics and food industries. With a view to using an ionic ester as acylating agent, whose conversion led to the release of ethanol, and due to the need to remove this alcohol so as to drive reaction equilibrium forward, a phase equilibrium study was conducted for the ehtanol/()-menthol/CO2 system, at pressures between 8 and 10 MPa and temperatures between 40 and 50 oC. It was found that CO2 is more selective towards ethanol, especially at the lowest pressure and highest temperature tested, leading to separation factors in the range 1.6-7.6. The pressure-temperature-composition data obtained were correlated with the Peng-Robinson equation of state and the Mathias-Klotz-Prausnitz mixing rule. The model fit the experimental results well, with an average absolute deviation (AAD) of 3.7 %. The resolution of racemic menthol was studied using two lipases, namely lipase from Candida rugosa (CRL) and immobilized lipase B from Candida antarctica (CALB), and two ionic acylating esters. No reaction was detected in either case. (R,S)-1-phenylethanol was used next, and it was found that with CRL low, nonselective, conversion of the alcohol took place, whereas CALB led to an enantiomeric excess (ee) of the substrate of 95%, at 30% conversion. Other acylating agents were tested for the resolution of ()-menthol, namely vinyl esters and acid anhydrides, using several lipases and varying other parameters that affect conversion and enantioselectivity, such as substrate concentration, solvent and temperature. One such acylating agent was propionic anhydride. It was thus performed a phase equilibrium study on the propionic anhydride/CO2 system, at temperatures between 35 and 50 oC. This study revealed that, at 35 oC and pressures from 7 MPa, the system is monophasic for all compositions. The enzymatic catalysis studies carried out with propionic anhydride revealed that the extent of noncatalyzed reaction was high, with a negative effect on enantioselectivity. These studies showed also that it was possible to reduce considerably the impact of the noncatalyzed reaction relative to the reaction catalyzed by CRL by lowering temperature to 4 oC. Vinyl decanoate was shown to lead to the best results at conditions amenable to a process combining the use of supercritical CO2 as agent for post-reaction separation. The use of vinyl decanoate in a number of IL solvents, namely [bmim][PF6], [bmim][BF4], [hmim][PF6], [omim][PF6], and [bmim][Tf2N], led to an enantiomeric excess of product (eep) values of over 96%, at about 50% conversion, using CRL. In n-hexane and supercritical CO2, reaction progressed more slowly.(...)