20 resultados para Energy systems analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation to obtain the degree of Doctor in Electrical and Computer Engineering, specialization of Collaborative Networks

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis submitted to the Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia for the degree of Doctor of Philosophy in Environmental Engineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The summer school “Renewable Energy Systems: Role and Use of Parliamentary Technology Assessment” was the first European Summer School with a pure focus on technology assessment. The aim of the three-day long summer school of the European project Parliaments and Civil Society in Technology Assessment (PACITA) was to create awareness of the potential of technology groups in Europe. Therefore, the summer school involved keynotes, practical exercises, mutual reflection, cutting edge training and networking to deal with the theme of renewable energy systems out of the perspective of Technology Assessment (TA), to meet transition objectives or to critically assess energy technologies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertation presented to obtain a Master degree in Biotechnology

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Paper presented at the Colloquium Gerpisa 2013, Paris (http://gerpisa.org/node/2085), Session n°: 19 New kinds of mobility: old and new business models

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau Mestre em Engenharia Civil – Perfil de Construção

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A crescente atenção revelada pelas sociedades nos últimos anos, no que respeita à sustentabilidade energética do planeta, tornou-se o principal impulsionador para o desenvolvimento de formas de exploração de energia que contribuem para a redução dos gases com efeito de estufa. A energia geotérmica de baixa entalpia (Shallow Geothermal Energy–SGE) é um dos tipos de energia verde utilizados para aquecimento e arrefecimento de edifícios. Nas últimas décadas, tem vindo a demonstrar uma elevada eficácia energética e aplicabilidade em diversos países em todo o mundo. Aos sistemas convencionais de exploração abertos e fechados, seguiram-se os sistemas com estruturas de fundações termoactivas. A Suíça e Áustria foram os países pioneiros onde se iniciou a exploração utilizando este tipo de estruturas, primeiro com recurso a lajes de fundo e depois, em 1984, através de estacas. A utilização generalizada de fundações de forma bi-funcional poderá resultar numa compensação sustentável dos seus custos de implementação. No entanto, é necessário conhecer de forma sólida o comportamento geotécnico dos solos face à imposição das diferentes acções térmicas provocadas pelos Sistemas Geotérmicos de Baixa Entalpia. A eficácia dos Ground Energy Systems (GES) está directamente associada à capacidade que os solos apresentam para fornecer ou dissipar calor. O desempenho dos GES e a sua eficiência está ainda por avaliar relativamente às condições existentes em Portugal. As propriedades térmicas dos solos são um desses aspectos, sendo da maior relevância na avaliação do seu desempenho. Nesta dissertação são abordados os diferentes mecanismos de transferência de calor nos solos bem como propriedades térmicas necessárias para a sua caracterização. Apresenta-se também um caso prático, para o qual foi realizada caracterização térmica e posterior modelação numérica de uma estrutura termoactiva, determinando-se os campos de temperaturas máximos e mínimos e os fluxos térmicos provocados pelo seu funcionamento.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The way in which electricity networks operate is going through a period of significant change. Renewable generation technologies are having a growing presence and increasing penetrations of generation that are being connected at distribution level. Unfortunately, a renewable energy source is most of the time intermittent and needs to be forecasted. Current trends in Smart grids foresee the accommodation of a variety of distributed generation sources including intermittent renewable sources. It is also expected that smart grids will include demand management resources, widespread communications and control technologies required to use demand response are needed to help the maintenance in supply-demand balance in electricity systems. Consequently, smart household appliances with controllable loads will be likely a common presence in our homes. Thus, new control techniques are requested to manage the loads and achieve all the potential energy present in intermittent energy sources. This thesis is focused on the development of a demand side management control method in a distributed network, aiming the creation of greater flexibility in demand and better ease the integration of renewable technologies. In particular, this work presents a novel multi-agent model-based predictive control method to manage distributed energy systems from the demand side, in presence of limited energy sources with fluctuating output and with energy storage in house-hold or car batteries. Specifically, here is presented a solution for thermal comfort which manages a limited shared energy resource via a demand side management perspective, using an integrated approach which also involves a power price auction and an appliance loads allocation scheme. The control is applied individually to a set of Thermal Control Areas, demand units, where the objective is to minimize the energy usage and not exceed the limited and shared energy resource, while simultaneously indoor temperatures are maintained within a comfort frame. Thermal Control Areas are overall thermodynamically connected in the distributed environment and also coupled by energy related constraints. The energy split is performed based on a fixed sequential order established from a previous completed auction wherein the bids are made by each Thermal Control Area, acting as demand side management agents, based on the daily energy price. The developed solutions are explained with algorithms and are applied to different scenarios, being the results explanatory of the benefits of the proposed approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on the presentation and discussion at the 3rd Winter School on Technology Assessment, December 2012, Universidade Nova de Lisboa (Portugal), Caparica Campus, PhD programme on Technology Assessment

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The reduction of greenhouse gas emissions is one of the big global challenges for the next decades due to its severe impact on the atmosphere that leads to a change in the climate and other environmental factors. One of the main sources of greenhouse gas is energy consumption, therefore a number of initiatives and calls for awareness and sustainability in energy use are issued among different types of institutional and organizations. The European Council adopted in 2007 energy and climate change objectives for 20% improvement until 2020. All European countries are required to use energy with more efficiency. Several steps could be conducted for energy reduction: understanding the buildings behavior through time, revealing the factors that influence the consumption, applying the right measurement for reduction and sustainability, visualizing the hidden connection between our daily habits impacts on the natural world and promoting to more sustainable life. Researchers have suggested that feedback visualization can effectively encourage conservation with energy reduction rate of 18%. Furthermore, researchers have contributed to the identification process of a set of factors which are very likely to influence consumption. Such as occupancy level, occupants behavior, environmental conditions, building thermal envelope, climate zones, etc. Nowadays, the amount of energy consumption at the university campuses are huge and it needs great effort to meet the reduction requested by European Council as well as the cost reduction. Thus, the present study was performed on the university buildings as a use case to: a. Investigate the most dynamic influence factors on energy consumption in campus; b. Implement prediction model for electricity consumption using different techniques, such as the traditional regression way and the alternative machine learning techniques; and c. Assist energy management by providing a real time energy feedback and visualization in campus for more awareness and better decision making. This methodology is implemented to the use case of University Jaume I (UJI), located in Castellon, Spain.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Based on the report for the unit “Project IV” of the PhD programme on Technology Assessment under the supervision of Dr.-Ing. Marcel Weil and Prof. Dr. António Brandão Moniz. The report was presented and discussed at the Doctorate Conference on Technologogy Assessment in July 2013 at the University Nova Lisboa, Caparica campus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thesis for the Degree of Master of Science in Biotechnology Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática

Relevância:

40.00% 40.00%

Publicador:

Resumo:

X-Ray Spectrom. 2003; 32: 396–401

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Paper presented at the 5th European Conference Economics and Management of Energy in Industry, Vilamoura, Algarve. Apr. 14-17, 2009, 11p. URL: http:// www.cenertec.pt/ecemei/