32 resultados para Endoplasmic-Reticulum Membrane


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Malaria, a disease caused by Plasmodium, represents a major health problem with a still disconcertingly high mortality rate (655 000 malaria deaths were estimated by the World Health Organization in 2012), mainly in Africa [1]. After a bite by an infected Anopheles mosquito occurs, Plasmodium sporozoites reach their target organ, the liver, within minutes. After traversing several hepatocytes, the parasite invades a final one and establishes a parasitophorous vacuole, where it replicates exponentially generating thousands of infective merozoites, the red blood cell infectious forms that are released in the blood stream. The liver stage is the first obligatory phase of malaria infection and, although no symptoms are associated with it, it is absolutely crucial to the establishment of a successful infection.(...)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biology

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertation to obtain a Master Degree in Biotechnology

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Unfolded Protein Response (UPR) is a signaling pathway that is activated by an accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) that causes ER stress. The activation of the UPR aims to restore ER homeostasis by attenuation of ER client protein translation, increased transcription of ER chaperones and ER associated degradation (ERAD) factors. If ER stress is too long or too strong, cells may die. The main signaling branch of the UPR is mediated by the ER transmembrane protein IRE1 and the transcription factor Xbp1. The active, spliced form of Xbp1 (Xbp1spliced) acts as a transcription factor with protective function against toxic protein aggregation. However, overexpression of Xbp1spliced in the developing Drosophila eye causes degeneration of the eye (“glossy” eye phenotype).(...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Journal of Electroanalytical Chemistry 541 (2003) 153-162

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Aims: Unconjugated bilirubin (UCB) impairs crucial aspects of cell function and induces apoptosis in primary cultured neurones. While mechanisms of cytotoxicity begin to unfold, mitochondria appear as potential primary targets. Methods: We used electron paramagnetic resonance spectroscopy analysis of isolated rat mitochondria to test the hypothesis that UCB physically interacts with mitochondria to induce structural membrane perturbation, leading to increased permeability, and subsequent release of apoptotic factors. Results: Our data demonstrate profound changes on mitochondrial membrane properties during incubation with UCB, including modified membrane lipid polarity and fluidity (P , 0:01), as well as disrupted protein mobility(P , 0:001). Consistent with increased permeability, cytochrome c was released from the intermembrane space(P , 0:01), perhaps uncoupling the respiratory chain and further increasing oxidative stress (P , 0:01). Both ursodeoxycholate, a mitochondrial-membrane stabilising agent, and cyclosporine A, an inhibitor of the permeability transition, almost completely abrogated UCB-induced perturbation. Conclusions: UCB directly interacts with mitochondria influencing membrane lipid and protein properties, redox status, and cytochrome c content. Thus, apoptosis induced by UCB may be mediated, at least in part, by physical perturbation of the mitochondrial membrane. These novel findings should ultimately prove useful to our evolving understanding of UCB cytotoxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia do Ambiente,perfil Sanitária

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Química, especialidade de Operações Unitárias e Fenómenos de Transferência, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Química, especialidade de Engenharia Bioquímica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein Sci. 2009 Mar;18(3):619-28. doi: 10.1002/pro.69.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

J Biol Inorg Chem (2008) 13:1321–1333 DOI 10.1007/s00775-008-0416-1