6 resultados para Dispersion Stabilization
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia do Ambiente, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry
Resumo:
Dissertation to obtain a Master Degree in Molecular Genetics and Biomedicine at Faculty of Sciences and Technology,Universidade Nova de Lisboa
Resumo:
Dispersion of returns has gained a lot of attention as a measure to distinguish good and bad investment opportunities time. In the following dissertation, the cross-sectional returns volatility is analyzed over a fifteen year period across the S&P100 Index composition. The main inference drawn from the data sample is that the canonical measure of dispersion is highly macro-risk driven and therefore more biased towards returns volatility rather than its correlation component.
Resumo:
Earthen building materials bear interesting environmental advantages and are the most appropriate to conserve historical earth constructions. To improve mechanical properties, these materials are often stabilized with cement or lime, but the impact of the stabilizers on the water transport properties, which are also critical, has been very rarely evaluated. We have tested four earth-based repair mortars applied on three distinct and representative rammed earth surfaces. Three mortars are based on earth collected from rammed earth buildings in south of Portugal and the fourth mortar is based on a commercial clayish earth. The main objective of the work was over the commercial earth mortar, applied stabilized and not stabilized on the three rammed earth surfaces to repair, to assess the influence of the stabilizers. The other three earth mortars (not stabilized) were applied on each type of rammed earth, representing the repair only made with local materials. The four unstabilized earth materials depicted nonlinear dependence on t1/2 during capillary suction. This behaviour was probably due to clay swelling. Stabilization with any of the four tested binders enabled the linear dependence of t1/2 expected from Washburn's equation, probably because the swelling did not take place in this case. However, the stabilizers also increased significantly the capillary suction and the capillary porosity of the materials. This means that, in addition to increasing the carbon footprint, stabilizers like cement and lime have functional disadvantages that discourage its use in repair mortars for raw earth construction.