11 resultados para Direct Simulation Monte Carlo Method
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Biomédica
Resumo:
This thesis proposes a Monte Carlo valuation method for Worst-of Auto-callable equity swaps. The valuation of this type of swap usually requires complex numerical methods which are implemented in “black-box” valuation systems. The method proposed is an alternative benchmark tool that is relatively simple to implement and customize. The performance of the method was evaluated according to the variance and bias of the output and to the accuracy when compared to a leading valuation system in the market.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Biomédica
Resumo:
Tese Mestrado Integrado em Engenharia Biomédica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
A presente dissertação foi desenvolvida com colaboração do Campus Tecnológico e Nuclear e do Hospital de São José
Resumo:
This work studies the combination of safe and probabilistic reasoning through the hybridization of Monte Carlo integration techniques with continuous constraint programming. In continuous constraint programming there are variables ranging over continuous domains (represented as intervals) together with constraints over them (relations between variables) and the goal is to find values for those variables that satisfy all the constraints (consistent scenarios). Constraint programming “branch-and-prune” algorithms produce safe enclosures of all consistent scenarios. Special proposed algorithms for probabilistic constraint reasoning compute the probability of sets of consistent scenarios which imply the calculation of an integral over these sets (quadrature). In this work we propose to extend the “branch-and-prune” algorithms with Monte Carlo integration techniques to compute such probabilities. This approach can be useful in robotics for localization problems. Traditional approaches are based on probabilistic techniques that search the most likely scenario, which may not satisfy the model constraints. We show how to apply our approach in order to cope with this problem and provide functionality in real time.
Resumo:
This work is divided into two distinct parts. The first part consists of the study of the metal organic framework UiO-66Zr, where the aim was to determine the force field that best describes the adsorption equilibrium properties of two different gases, methane and carbon dioxide. The other part of the work focuses on the study of the single wall carbon nanotube topology for ethane adsorption; the aim was to simplify as much as possible the solid-fluid force field model to increase the computational efficiency of the Monte Carlo simulations. The choice of both adsorbents relies on their potential use in adsorption processes, such as the capture and storage of carbon dioxide, natural gas storage, separation of components of biogas, and olefin/paraffin separations. The adsorption studies on the two porous materials were performed by molecular simulation using the grand canonical Monte Carlo (μ,V,T) method, over the temperature range of 298-343 K and pressure range 0.06-70 bar. The calibration curves of pressure and density as a function of chemical potential and temperature for the three adsorbates under study, were obtained Monte Carlo simulation in the canonical ensemble (N,V,T); polynomial fit and interpolation of the obtained data allowed to determine the pressure and gas density at any chemical potential. The adsorption equilibria of methane and carbon dioxide in UiO-66Zr were simulated and compared with the experimental data obtained by Jasmina H. Cavka et al. The results show that the best force field for both gases is a chargeless united-atom force field based on the TraPPE model. Using this validated force field it was possible to estimate the isosteric heats of adsorption and the Henry constants. In the Grand-Canonical Monte Carlo simulations of carbon nanotubes, we conclude that the fastest type of run is obtained with a force field that approximates the nanotube as a smooth cylinder; this approximation gives execution times that are 1.6 times faster than the typical atomistic runs.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química