7 resultados para Data structures
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Information systems are widespread and used by anyone with computing devices as well as corporations and governments. It is often the case that security leaks are introduced during the development of an application. Reasons for these security bugs are multiple but among them one can easily identify that it is very hard to define and enforce relevant security policies in modern software. This is because modern applications often rely on container sharing and multi-tenancy where, for instance, data can be stored in the same physical space but is logically mapped into different security compartments or data structures. In turn, these security compartments, to which data is classified into in security policies, can also be dynamic and depend on runtime data. In this thesis we introduce and develop the novel notion of dependent information flow types, and focus on the problem of ensuring data confidentiality in data-centric software. Dependent information flow types fit within the standard framework of dependent type theory, but, unlike usual dependent types, crucially allow the security level of a type, rather than just the structural data type itself, to depend on runtime values. Our dependent function and dependent sum information flow types provide a direct, natural and elegant way to express and enforce fine grained security policies on programs. Namely programs that manipulate structured data types in which the security level of a structure field may depend on values dynamically stored in other fields The main contribution of this work is an efficient analysis that allows programmers to verify, during the development phase, whether programs have information leaks, that is, it verifies whether programs protect the confidentiality of the information they manipulate. As such, we also implemented a prototype typechecker that can be found at http://ctp.di.fct.unl.pt/DIFTprototype/.
Resumo:
Dissertação apresentada para a obtenção do grau de Doutor em Engenharia Química, especialidade Engenharia da Reacção Química, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Dissertation presented at the Faculty of Science and Technology of the New University of Lisbon in fulfillment of the requirements for the Masters degree in Electrical Engineering and Computers
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Civil – Perfil de Estruturas
Resumo:
Complex systems, i.e. systems composed of a large set of elements interacting in a non-linear way, are constantly found all around us. In the last decades, different approaches have been proposed toward their understanding, one of the most interesting being the Complex Network perspective. This legacy of the 18th century mathematical concepts proposed by Leonhard Euler is still current, and more and more relevant in real-world problems. In recent years, it has been demonstrated that network-based representations can yield relevant knowledge about complex systems. In spite of that, several problems have been detected, mainly related to the degree of subjectivity involved in the creation and evaluation of such network structures. In this Thesis, we propose addressing these problems by means of different data mining techniques, thus obtaining a novel hybrid approximation intermingling complex networks and data mining. Results indicate that such techniques can be effectively used to i) enable the creation of novel network representations, ii) reduce the dimensionality of analyzed systems by pre-selecting the most important elements, iii) describe complex networks, and iv) assist in the analysis of different network topologies. The soundness of such approach is validated through different validation cases drawn from actual biomedical problems, e.g. the diagnosis of cancer from tissue analysis, or the study of the dynamics of the brain under different neurological disorders.
Resumo:
Stratigraphic Columns (SC) are the most useful and common ways to represent the eld descriptions (e.g., grain size, thickness of rock packages, and fossil and lithological components) of rock sequences and well logs. In these representations the width of SC vary according to the grain size (i.e., the wider the strata, the coarser the rocks (Miall 1990; Tucker 2011)), and the thickness of each layer is represented at the vertical axis of the diagram. Typically these representations are drawn 'manually' using vector graphic editors (e.g., Adobe Illustrator®, CorelDRAW®, Inskape). Nowadays there are various software which automatically plot SCs, but there are not versatile open-source tools and it is very di cult to both store and analyse stratigraphic information. This document presents Stratigraphic Data Analysis in R (SDAR), an analytical package1 designed for both plotting and facilitate the analysis of Stratigraphic Data in R (R Core Team 2014). SDAR, uses simple stratigraphic data and takes advantage of the exible plotting tools available in R to produce detailed SCs. The main bene ts of SDAR are: (i) used to generate accurate and complete SC plot including multiple features (e.g., sedimentary structures, samples, fossil content, color, structural data, contacts between beds), (ii) developed in a free software environment for statistical computing and graphics, (iii) run on a wide variety of platforms (i.e., UNIX, Windows, and MacOS), (iv) both plotting and analysing functions can be executed directly on R's command-line interface (CLI), consequently this feature enables users to integrate SDAR's functions with several others add-on packages available for R from The Comprehensive R Archive Network (CRAN).