3 resultados para Cutting zones
Resumo:
In this thesis, a predictive analytical and numerical modeling approach for the orthogonal cutting process is proposed to calculate temperature distributions and subsequently, forces and stress distributions. The models proposed include a constitutive model for the material being cut based on the work of Weber, a model for the shear plane based on Merchants model, a model describing the contribution of friction based on Zorev’s approach, a model for the effect of wear on the tool based on the work of Waldorf, and a thermal model based on the works of Komanduri and Hou, with a fraction heat partition for a non-uniform distribution of the heat in the interfaces, but extended to encompass a set of contributions to the global temperature rise of chip, tool and work piece. The models proposed in this work, try to avoid from experimental based values or expressions, and simplifying assumptions or suppositions, as much as possible. On a thermo-physical point of view, the results were affected not only by the mechanical or cutting parameters chosen, but also by their coupling effects, instead of the simplifying way of modeling which is to contemplate only the direct effect of the variation of a parameter. The implementation of these models was performed using the MATLAB environment. Since it was possible to find in the literature all the parameters for AISI 1045 and AISI O2, these materials were used to run the simulations in order to avoid arbitrary assumption.
Resumo:
The second half of the XX century was marked by a great increase in the number of people living in cities. Urban agglomerations became poles of attraction for migration flows and these phenomena, coupled with growing car-ownership rates, resulted in the fact that modern transport systems are characterized by large number of users and traffic modes. The necessity to organize these complex systems and to provide space for different traffic modes changed the way cities look. Urban areas had to cope with traffic flows, and as a result nowadays typical street pattern consists of a road for motorized vehicles, a cycle lane (in some cases), pavement for pedestrians, parking and a range of crucial signage to facilitate navigation and make mobility more secure. However, this type of street organization may not be desirable in certain areas, more specifically, in the city centers. Downtown areas have always been places where economic, leisure, social and other types of facilities are concentrated, not surprisingly, they often attract large number of people and this frequently results in traffic jams, air and noise pollution, thus creating unpleasant environment. Besides, excessive traffic signage in central locations can harm the image and perception of a place, this relates in particular to historical centers with architectural heritage.
Resumo:
Analytical, numerical and experimental models have been developed over time to try to characterize and understand the metal cutting process by chip removal. A true knowledge of the cutting process by chip removal is required by the increasing production, by the quality requirements of the product and by the reduced production time, in the industries in which it is employed. In this thesis an experimental setup is developed to evaluate the forces and the temperature distribution in the tool according to the orthogonal cutting model conditions, in order to evaluate its performance and its possible adoption in future works. The experimental setup is developed in a CNC lathe and uses an orthogonal cutting configuration, in which thin discs fixed onto a mandrel are cut by the cutting insert. In this experimental setup, the forces are measured by a piezoelectric dynamometer while temperatures are measured by thermocouples placed juxtaposed to the side face of the cutting insert. Three different solutions are implemented and evaluated for the thermocouples attachment in the cutting insert: thermocouples embedded in thermal paste, thermocouples embedded in copper plate and thermocouples brazed in the cutting insert. From the tests performed in the experimental setup it is concluded that the adopted forces measurement technique shows a good performance. Regarding to the adopted temperatures measurement techniques, only the thermocouples brazed in the cutting insert solution shows a good performance for temperature measurement. The remaining solutions show contact problems between the thermocouple and the side face of the cutting insert, especially when the vibration phenomenon intensifies during the cut. It is concluded that the experimental setup does not present a sufficiently robust and reliable performance, and that it can only be used in future work after making improvements in the assembly of the thermocouples.