8 resultados para Culture Media, Conditioned
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica
Resumo:
Dissertação para obtenção do Grau de Doutor em Biologia
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
This study focuses on the assessment of the fermentation conditions required to modulate the metabolic flux in the osmotolerant yeast Candida magnoliae and evaluate its potential to produce low-alcoholic and low-caloric fermented beverages. For that purpose, two strains, PYCC 2903 and PYCC 3191, were used and fermentation conditions as oxygenation, sugar concentration and the ratio of glucose to fructose were studied using synthetic culture media. Candida magnoliae PYCC 2903 was subsequently used to ferment real industrial fructose-rich substrates such as fruit juices. Sugar consumption profiles for C.magnoliae PYCC 2903 incubated aerobically in the presence of high fructose and glucose concentrations (15%, 10% and 5%) showed a selective utilization of fructose, denoting a preference for this sugar over glucose. The lower ratio between ethanol and sugar alcohols yield was obtained for both strains incubated under oxygen limitation simulating industrial fructose-rich substrates, confirming the ability of this yeast to direct fermentation towards alternative products. Enzymatic assays for hexokinase activity in terms of capacity and affinity for glucose and fructose were performed, aiming to elucidate its contribution to the fructophilic behaviour of this yeast. Enzymatic assays for both strains showed that the Vmax is two to threefold higher for fructose than for glucose but Km is also 10-20-fold higher for this sugar than for glucose. Hence, hexokinase kinetic properties do not explain fructophily in C.magnoliae. This indicates that fructose transport is probably determining in this respect, as observed for other fructophilic yeasts. Fruit juice fermentations with C.magnoliae PYCC 2903 revealed a potential for the production of beverages with interesting sensorial properties. Pear and peach fermentations exhibited the best results with the lowest ratio between ethanol and sugar alcohols yield and the most pleasant organoleptic features.
Resumo:
The present PhD thesis develops the cell functional enviromics (CFE) method to investigate the relationship between environment and cellular physiology. CFE may be defined as the envirome-wide cellular function reconstruction through the collection and systems-level analysis of dynamic envirome data. Throughout the thesis, CFE is illustrated by two main applications to cultures of a constitutive P. pastoris X33 strain expressing a scFv antibody fragment. The first application addresses the challenge of culture media development. A dataset was built from 26 shake flask experiments, with variations in trace elements concentrations and basal medium dilution based on the standard BSM+PTM1. Protein yield showed high sensitivity to culture medium variations, while biomass was essentially determined by BSM dilution. High scFv yield was associated with high overall metabolic fluxes through central carbon pathways concomitantly with a relative shift of carbon flux from biosynthetic towards energy-generating pathways. CFE identified three cellular functions (growth, energy generation and by-product formation) that together described 98.8% of the variance in observed fluxes. Analyses of how medium factors relate to identified cellular functions showed iron and manganese at concentrations close to PTM1 inhibit overall metabolic activity. The second application addresses bioreactor operation. Pilot 50 L fed-batch cultivations, followed by 1H-NMR exometabolite profiling, allowed the acquisition of data for 21 environmental factors over time. CFE identified five major metabolic pathway groups that are frequently activated by the environment. The resulting functional enviromics map may serve as template for future optimization of media composition and feeding strategies for Pichia pastoris. The present PhD thesis is a step forward towards establishing the foundations of CFE that is still at its infancy. The methods developed herein are a contribution for changing the culture media and process development paradigm towards a holistic and systematic discipline in the future.
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Tese apresentada para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Media Digitais
Resumo:
Saccharomyces cerevisiae as well as other microorganisms are frequently used in industry with the purpose of obtain different kind of products that can be applied in several areas (research investigation, pharmaceutical compounds, etc.). In order to obtain high yields for the desired product, it is necessary to make an adequate medium supplementation during the growth of the microorganisms. The higher yields are typically reached by using complex media, however the exact formulation of these media is not known. Moreover, it is difficult to control the exact composition of complex media, leading to batch-to-batch variations. So, to overcome this problem, some industries choose to use defined media, with a defined and known chemical composition. However these kind of media, many times, do not reach the same high yields that are obtained by using complex media. In order to obtain similar yield with defined media the addition of many different compounds has to be tested experimentally. Therefore, the industries use a set of empirical methods with which it is tried to formulate defined media that can reach the same high yields as complex media. In this thesis, a defined medium for Saccharomyces cerevisiae was developed using a rational design approach. In this approach a given metabolic network of Saccharomyces cerevisiae is divided into a several unique and not further decomposable sub networks of metabolic reactions that work coherently in steady state, so called elementary flux modes. The EFMtool algorithm was used in order to calculate the EFM’s for two Saccharomyces cerevisiae metabolic networks (amino acids supplemented metabolic network; amino acids non-supplemented metabolic network). For the supplemented metabolic network 1352172 EFM’s were calculated and then divided into: 1306854 EFM’s producing biomass, and 18582 EFM’s exclusively producing CO2 (cellular respiration). For the non-supplemented network 635 EFM’s were calculated and then divided into: 215 EFM’s producing biomass; 420 EFM’s producing exclusively CO2. The EFM’s of each group were normalized by the respective glucose consumption value. After that, the EFMs’ of the supplemented network were grouped again into: 30 clusters for the 1306854 EFMs producing biomass and, 20 clusters for the 18582 EFM’s producing CO2. For the non-supplemented metabolic network the respective EFM’s of each metabolic function were grouped into 10 clusters. After the clustering step, the concentrations of the other medium compounds were calculated by considering a reasonable glucose amount and by accounting for the proportionality between the compounds concentrations and the glucose ratios. The approach adopted/developed in this thesis may allow a faster and more economical way for media development.