32 resultados para Contaminated Water


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Química, especialidade de Engenharia Bioquímica

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Water is a limited resource for which demand is growing. Contaminated water from inadequate wastewater treatment provides one of the greatest health challenges as it restricts development and increases poverty in emerging and developing countries. Therefore, the connection between wastewater and human health is linked to access to sanitation and to human waste disposal. Adequate sanitation is expected to create a barrier between disposed human excreta and sources of drinking water. Different approaches to wastewater management are required for different geographical regions and different stages of economic governance depending on the capacity to manage wastewater. Effective wastewater management can contribute to overcome the challenges of water scarcity. Separate collection of human urine at its source is one promising approach that strongly reduces the economic and load demands on wastewater treatment plants (WWTP). Treatment of source-separated urine appears as a sanitation system that is affordable, produces a valuable fertiliser, reduces pollution of water resources and promotes health. However, the technical realisation of urine separation still faces challenges. Biological hydrolysis of urea causes a strong increase of ammonia and pH. Under these conditions ammonia volatilises which can cause odour problems and significant nitrogen losses. The above problems can be avoided by urine stabilisation. Biological nitrification is a suitable process for stabilisation of urine. Urine is a highly concentrated nutrient solution which can lead to strong inhibition effects during bacterial nitrification. This can further lead to process instabilities. The major cause of instability is accumulation of the inhibitory intermediate compound nitrite, which could lead to process breakdown. Enhanced on-line nitrite monitoring can be applied in biological source-separated urine nitrification reactors as a sustainable and efficient way to improve the reactor performance, avoiding reactor failures and eventual loss of biological activity. Spectrophotometry appears as a promising candidate for the development and application of on-line nitrite monitoring. Spectroscopic methods together with chemometrics are presented in this work as a powerful tool for estimation of nitrite concentrations. Principal component regression (PCR) is applied for the estimation of nitrite concentrations using an immersible UV sensor and off-line spectra acquisition. The effect of particles and the effect of saturation, respectively, on the UV absorbance spectra are investigated. The analysis allows to conclude that (i) saturation has a substantial effect on nitrite estimation; (ii) particles appear to have less impact on nitrite estimation. In addition, improper mixing together with instabilities in the urine nitrification process appears to significantly reduce the performance of the estimation model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Release of chloroethene compounds into the environment often results in groundwater contamination, which puts people at risk of exposure by drinking contaminated water. cDCE (cis-1,2-dichloroethene) accumulation on subsurface environments is a common environmental problem due to stagnation and partial degradation of other precursor chloroethene species. Polaromonas sp. strain JS666 apparently requires no exotic growth factors to be used as a bioaugmentation agent for aerobic cDCE degradation. Although being the only suitable microorganism found capable of such, further studies are needed for improving the intrinsic bioremediation rates and fully comprehend the metabolic processes involved. In order to do so, a metabolic model, iJS666, was reconstructed from genome annotation and available bibliographic data. FVA (Flux Variability Analysis) and FBA (Flux Balance Analysis) techniques were used to satisfactory validate the predictive capabilities of the iJS666 model. The iJS666 model was able to predict biomass growth for different previously tested conditions, allowed to design key experiments which should be done for further model improvement and, also, produced viable predictions for the use of biostimulant metabolites in the cDCE biodegradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Química Pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The initial goal of this work was the development of a supported liquid membrane (SLM) bioreactor for the remediation of vaccine production effluents contaminated with a highly toxic organomercurial – thiomersal. Therefore, two main aspects were focused on: 1) the development of a stable supported liquid membrane – using room temperature ionic liquids (RTILs) – for the selective transport of thiomersal from the wastewater to a biological compartment, 2) study of the biodegradation kinetics of thiomersal to metallic mercury by a Pseudomonas putida strain. The first part of the work focused on the evaluation of the physicochemical properties of ionic liquids and on the SLMs’ operational stability. The results obtained showed that, although it is possible to obtain a SLM with a high stability, water possesses nonnegligible solubility in the RTILs studied. The formation of water clusters inside the hydrophobic ionic liquid was identified and found to regulate the transport of water and small ions. In practical terms, this meant that, although it was possible to transport thiomersal from the vaccine effluent to the biological compartment, complete isolation of the microbial culture could not be guaranteed and the membrane might ultimately be permeable to other species present in the aqueous vaccine wastewater. It was therefore decided not to operate the initially targeted integrated system but, instead, the biological system by itself. Additionally, attention was given to the development of a thorough understanding of the transport mechanisms involved in the solubilisation and transport of water through supported liquid membranes with RTILs as well as to the evaluation of the effect of water uptake by the SLM in the transport mechanisms of water-soluble solutes and its effect on SLM performance. The results obtained highlighted the determinant role played by water – solubilised inside the ionic liquids – on the transport mechanism. It became clear that the transport mechanism of water and water-soluble solutes through SLMs with [CnMIM][PF6] RTILs was regulated by the dynamics of water clusters inside the RTIL, rather than by molecular diffusion through the bulk of the ionic liquid. Although the stability tests vi performed showed that there were no significant losses of organic phase from the membrane pores, the formation of water clusters inside the ionic liquid, which constitute new, non-selective environments for solute transport, leads to a clear deterioration of SLM performance and selectivity. Nevertheless, electrical impedance spectroscopy characterisation of the SLMs showed that the formation of water clusters did not seem to have a detrimental effect on the SLMs’ electrical characteristics and highlighted the potential of using this type of membranes in electrochemical applications with low resistance requirements. The second part of the work studied the kinetics of thiomersal degradation by a pure culture of P. putida spi3 strain, in batch culture and using a synthe tic wastewater. A continuous ly stirred tank reactor fed with the synthetic wastewater was also operated and the bioreactor’s performance and robustness, when exposed to thiomersal shock loads, were evaluated. Finally, a bioreactor for the biological treatment of a real va ccine production effluent was set up and operated at different dilution rates. Thus it was possible to treat a real thiomersal-contaminated effluent, lowering the outlet mercury concentration to values below the European limit for mercury effluent discharges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a “perfect” drinking water system, the water quality for the consumers should be the same as the quality of the water leaving the treatment plant. However, some variability along the system can lead to a decrease in water quality (such as discolouration) which is usually reflected in the number of the customer complaints. This change may be related to the amount of sediment in the distribution network, leading to an increase in turbidity at the water supply. Since there is no such thing as a perfect drinking water system, the behaviour of particles in a drinking water network needs a suitable approach in order to understand how it works. Moreover, the combination of measurements, such as turbidity patterns and the Resuspension Potential Method (RPM) aid in the prevention of discoloured water complaints and intervention in the treatment upgrade or the network cleaning. Besides sediments there is also bacterial regrowth in the network, which is related to the water quality and distribution network characteristics. In a theoretical drinking water system higher velocities, temperature and shorter residences times lead to wider bacterial growth. In this study we observe velocity and residence steady-states and bacterial does not seem to be related to either. It can be concluded that adequate measurements of RPM, customer complaints and bacterial concentrations allow a wider knowledge on particle behaviour in drinking water systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada à Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia do Ambiente, Gestão de Sistemas Ambientais

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis submitted to the Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia for the degree of Doctor of Philosophy in Environmental Engineering

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado integrado em Engenharia do Ambiente, perfil: Gestão de Sistemas Ambientais

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proceedings of tile 1" R.C.A.N.S. Congress, Lisboa, October 1992

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation submitted to obtain a Ph.D. (Doutoramento) degree in Biology at the Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis submitted to the Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia for the degree of Doctor of Philosophy in Environmental Sciences

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Ambiente pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biochemistry, Plant Physiology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para Obtenção de Grau de Mestre em Engenharia Química e Bioquímica