9 resultados para Constraints-Led Approach


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cretaceous Research 30 (2009) 575–586

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis submitted to the Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia for the degree of Doctor of Philosophy in Environmental Sciences

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis submitted to the Instituto Superior de Estatística e Gestão de Informação da Universidade Nova de Lisboa in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Information Management – Geographic Information Systems

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão Industrial

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia do Ambiente

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estuaries and other transitional waters are complex ecosystems critically important as nursery and shelter areas for organisms. Also, humans depend on estuaries for multiple socio-economical activities such as urbanism, tourism, heavy industry, (taking advantage of shipping), fisheries and aquaculture, the development of which led to strong historical pressures, with emphasis on pollution. The degradation of estuarine environmental quality implies ecologic, economic and social prejudice, hence the importance of evaluating environmental quality through the identification of stressors and impacts. The Sado Estuary (SW Portugal) holds the characteristics of industrialized estuaries, which results in multiple adverse impacts. Still, it has recently been considered moderately contaminated. In fact, many studies were conducted in the past few years, albeit scattered due to the absence of true biomonitoring programmes. As such, there is a need to integrate the information, in order to obtain a holistic perspective of the area able to assist management and decision-making. As such, a geographical information system (GIS) was created based on sediment contamination and biomarker data collected from a decade-long time-series of publications. Four impacted and a reference areas were identified, characterized by distinct sediment contamination patterns related to different hot spots and diffuse sources of toxicants. The potential risk of sediment-bound toxicants was determined by contrasting the levels of pollutants with available sediment quality guidelines, followed by their integration through the Sediment Quality guideline Quotient (SQG-Q). The SQG-Q estimates per toxicant or class was then subjected to georreferencing and statistical analyses between the five distinct areas and seasons. Biomarker responses were integrated through the Biomarkers Consistency Indice and georreferenced as well through GIS. Overall, in spite of the multiple biological traits surveyed, the biomarker data (from several organisms) are accordant with sediment contamination. The most impacted areas were the shipyard area and adjacent industrial belt, followed by urban and agricultural grounds. It is evident that the estuary, although globally moderately impacted, is very heterogeneous and affected by a cocktail of contaminants, especially metals and polycyclic aromatic hydrocarbon. Although elements (like copper, zinc and even arsenic) may originate from the geology of the hydrographic basin of the Sado River, the majority of the remaining contaminants results from human activities. The present work revealed that the estuary should be divided into distinct biogeographic units, in order to implement effective measures to safeguard environmental quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to usage conditions, hazardous environments or intentional causes, physical and virtual systems are subject to faults in their components, which may affect their overall behaviour. In a ‘black-box’ agent modelled by a set of propositional logic rules, in which just a subset of components is externally visible, such faults may only be recognised by examining some output function of the agent. A (fault-free) model of the agent’s system provides the expected output given some input. If the real output differs from that predicted output, then the system is faulty. However, some faults may only become apparent in the system output when appropriate inputs are given. A number of problems regarding both testing and diagnosis thus arise, such as testing a fault, testing the whole system, finding possible faults and differentiating them to locate the correct one. The corresponding optimisation problems of finding solutions that require minimum resources are also very relevant in industry, as is minimal diagnosis. In this dissertation we use a well established set of benchmark circuits to address such diagnostic related problems and propose and develop models with different logics that we formalise and generalise as much as possible. We also prove that all techniques generalise to agents and to multiple faults. The developed multi-valued logics extend the usual Boolean logic (suitable for faultfree models) by encoding values with some dependency (usually on faults). Such logics thus allow modelling an arbitrary number of diagnostic theories. Each problem is subsequently solved with CLP solvers that we implement and discuss, together with a new efficient search technique that we present. We compare our results with other approaches such as SAT (that require substantial duplication of circuits), showing the effectiveness of constraints over multi-valued logics, and also the adequacy of a general set constraint solver (with special inferences over set functions such as cardinality) on other problems. In addition, for an optimisation problem, we integrate local search with a constructive approach (branch-and-bound) using a variety of logics to improve an existing efficient tool based on SAT and ILP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basic motivation of this work was the integration of biophysical models within the interval constraints framework for decision support. Comparing the major features of biophysical models with the expressive power of the existing interval constraints framework, it was clear that the most important inadequacy was related with the representation of differential equations. System dynamics is often modelled through differential equations but there was no way of expressing a differential equation as a constraint and integrate it within the constraints framework. Consequently, the goal of this work is focussed on the integration of ordinary differential equations within the interval constraints framework, which for this purpose is extended with the new formalism of Constraint Satisfaction Differential Problems. Such framework allows the specification of ordinary differential equations, together with related information, by means of constraints, and provides efficient propagation techniques for pruning the domains of their variables. This enabled the integration of all such information in a single constraint whose variables may subsequently be used in other constraints of the model. The specific method used for pruning its variable domains can then be combined with the pruning methods associated with the other constraints in an overall propagation algorithm for reducing the bounds of all model variables. The application of the constraint propagation algorithm for pruning the variable domains, that is, the enforcement of local-consistency, turned out to be insufficient to support decision in practical problems that include differential equations. The domain pruning achieved is not, in general, sufficient to allow safe decisions and the main reason derives from the non-linearity of the differential equations. Consequently, a complementary goal of this work proposes a new strong consistency criterion, Global Hull-consistency, particularly suited to decision support with differential models, by presenting an adequate trade-of between domain pruning and computational effort. Several alternative algorithms are proposed for enforcing Global Hull-consistency and, due to their complexity, an effort was made to provide implementations able to supply any-time pruning results. Since the consistency criterion is dependent on the existence of canonical solutions, it is proposed a local search approach that can be integrated with constraint propagation in continuous domains and, in particular, with the enforcing algorithms for anticipating the finding of canonical solutions. The last goal of this work is the validation of the approach as an important contribution for the integration of biophysical models within decision support. Consequently, a prototype application that integrated all the proposed extensions to the interval constraints framework is developed and used for solving problems in different biophysical domains.