6 resultados para Complex SU(2) yang-mills-higgs configurations with finite complex euclidean action
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Eletrotécnica e de Computadores
Resumo:
Due to the importance and wide applications of the DNA analysis, there is a need to make genetic analysis more available and more affordable. As such, the aim of this PhD thesis is to optimize a colorimetric DNA biosensor based on gold nanoprobes developed in CEMOP by reducing its price and the needed volume of solution without compromising the device sensitivity and reliability, towards the point of care use. Firstly, the price of the biosensor was decreased by replacing the silicon photodetector by a low cost, solution processed TiO2 photodetector. To further reduce the photodetector price, a novel fabrication method was developed: a cost-effective inkjet printing technology that enabled to increase TiO2 surface area. Secondly, the DNA biosensor was optimized by means of microfluidics that offer advantages of miniaturization, much lower sample/reagents consumption, enhanced system performance and functionality by integrating different components. In the developed microfluidic platform, the optical path length was extended by detecting along the channel and the light was transmitted by optical fibres enabling to guide the light very close to the analysed solution. Microfluidic chip of high aspect ratio (~13), smooth and nearly vertical sidewalls was fabricated in PDMS using a SU-8 mould for patterning. The platform coupled to the gold nanoprobe assay enabled detection of Mycobacterium tuberculosis using 3 8l on DNA solution, i.e. 20 times less than in the previous state-of-the-art. Subsequently, the bio-microfluidic platform was optimized in terms of cost, electrical signal processing and sensitivity to colour variation, yielding 160% improvement of colorimetric AuNPs analysis. Planar microlenses were incorporated to converge light into the sample and then to the output fibre core increasing 6 times the signal-to-losses ratio. The optimized platform enabled detection of single nucleotide polymorphism related with obesity risk (FTO) using target DNA concentration below the limit of detection of the conventionally used microplate reader (i.e. 15 ng/μl) with 10 times lower solution volume (3 μl). The combination of the unique optical properties of gold nanoprobes with microfluidic platform resulted in sensitive and accurate sensor for single nucleotide polymorphism detection operating using small volumes of solutions and without the need for substrate functionalization or sophisticated instrumentation. Simultaneously, to enable on chip reagents mixing, a PDMS micromixer was developed and optimized for the highest efficiency, low pressure drop and short mixing length. The optimized device shows 80% of mixing efficiency at Re = 0.1 in 2.5 mm long mixer with the pressure drop of 6 Pa, satisfying requirements for the application in the microfluidic platform for DNA analysis.
Resumo:
This thesis was focused on the production, extraction and characterization of chitin:β-glucan complex (CGC). In this process, glycerol byproduct from the biodiesel industry was used as carbon source. The selected CGC producing yeast was Komagataella pastoris (formerly known as Pichia pastoris), due the fact that to achieved high cell densities using as carbon source glycerol from the biodiesel industry. Firstly, a screening of K. pastoris strains was performed in shake flask assays, in order to select the strain of K. pastoris with better performance, in terms of growth, using glycerol as a carbon source. K. pastoris strain DSM 70877 achieved higher final cell densities (92-97 g/l), using pure glycerol (99%, w/v) and in glycerol from the biodiesel industry (86%, w/v), respectively, compared to DSM 70382 strain (74-82 g/l). Based on these shake flask assays results, the wild type DSM 70877 strain was selected to proceed for cultivation in a 2 l bioreactor, using glycerol byproduct (40 g/l), as sole carbon source. Biomass production by K. pastoris was performed under controlled temperature and pH (30.0 ºC and 5.0, respectively). More than 100 g/l biomass was obtained in less than 48 h. The yield of biomass on a glycerol basis was 0.55 g/g during the batch phase and 0.63 g/g during the fed-batch phase. In order to optimize the downstream process, by increasing extraction and purification efficiency of CGC from K. pastoris biomass, several assays were performed. It was found that extraction with 5 M NaOH at 65 ºC, during 2 hours, associated to neutralization with HCl, followed by successive washing steps with deionised water until conductivity of ≤20μS/cm, increased CGC purity. The obtained copolymer, CGCpure, had a chitin:glucan molar ratio of 25:75 mol% close to commercial CGC samples extracted from A. niger mycelium, kiOsmetine from Kitozyme (30:70 mol%). CGCpure was characterized by solid-state Nuclear Magnetic Resonance (NMR) spectroscopy and Differential Scanning Calorimetry (DCS), revealing a CGC with higher purity than a CGC commercial (kiOsmetine). In order to optimize CGC production, a set of batch cultivation experiments was performed to evaluate the effect of pH (3.5–6.5) and temperature (20–40 ºC) on the specific cell growth rate, CGC production and polymer composition. Statistical tools (response surface methodology and central composite design) were used. The CGC content in the biomass and the volumetric productivity (rp) were not significantly affected within the tested pH and temperature ranges. In contrast, the effect of pH and temperature on the CGC molar ratio was more pronounced. The highest chitin: β-glucan molar ratio (> 14:86) was obtained for the mid-range pH (4.5-5.8) and temperatures (26–33 ºC). The ability of K. pastoris to synthesize CGC with different molar ratios as a function of pH and temperature is a feature that can be exploited to obtain tailored polymer compositions.(...)
Resumo:
Dissertação para obtenção do Grau de Doutor em Química Sustentável
Resumo:
Dissertação para obtenção do grau de Mestre em Genética Molecular e Biomedicina
Resumo:
RESUMO: As células dendríticas (CDs) são fundamentais na imunomodulação e iniciação de respostas imunes adaptativas, enquanto os ácidos siálicos (Sias) são potenciais imunomoduladores. Estas células expressam níveis elevados da sialiltransferase ST6Gal-1, que transfere Sias para a posição terminal de oligossacáridos. De facto, a maturação de CDs está associada a uma diminuição da sialilação na sua superfície celular. Apesar de ter função biológica desconhecida, a forma solúvel, extracelular de ST6Gal-1 aumenta em cancros e inflamação. Ainda assim, esta foi recentemente identificada como moduladora da hematopoiese. Considerando o importante papel das CDs na iniciação de respostas anticancerígenas, uma ligação entre a sialilação extrínseca induzida por ST6Gal-1 extracelular e o seu papel na modulação de CDs deve ser identificada. Neste trabalho hipotetizou-se que a sialilação α2,6 extrínseca de CDs diminui o seu perfil de maturação mediante ativação por lipopolissacarídeo (LPS). O objetivo principal foi sialilar extrinsecamente em α2,6 CDs da medula óssea de murganhos, avaliando os seus perfis de maturação e de libertação de citocinas, após estimulação com LPS (por Citometria de Fluxo e ELISA, respetivamente). Ao contrário da hipótese, o perfil celular não foi modulado, usando várias abordagens. Por outro lado, a consequência da falta de α2,6 Sias na maturação de CDs foi avaliada analisando: 1) CDs da medula óssea de murganhos tratadas com sialidase, 2) CDs da medula óssea e 3) CDs das vias aéreas, ambas de murganhos deficientes em ST6Gal-1, comparando com a estirpe selvagem. Estes resultados sugerem que a perta total de α2,6 Sias se relaciona com o aumento da expressão do complexo de histocompatibilidade principal de classe II. Apesar de controverso, é provável existirem mecanismos inerentes à ativação por LPS, reduzindo a eficácia de ST6Gal-1 extracelular. Por outro lado, a modificação no perfil de CDs de murganhos deficientes em ST6Gal-1 poderá relacionar-se com uma predisposição para um estado inflamatório severo. Com isto, o trabalho desenvolvido abriu futuras linhas de investigação, nomeadamente explorar outros fatores envolvidos na (de)sialilação α2,6 de CDs, podendo ter impacto em imunoterapia com uso de CDs.--------------------------ABSTRACT: Dendritic cells (DCs) are vital for immunomodulation and the initiation of adaptive immune responses, whereas sialic acids (Sias) are potential immunomodulators. These cells express high levels of sialyltransferase ST6Gal-1, responsible for transferring Sias to the terminal position of oligosaccharide chains. Indeed, DCs’ maturation is associated with decreased cell surface sialylation. Although its biological significance is unknown, the soluble, extracellular form of ST6Gal-1 increases in cancers and inflammation. However, extracellular ST6Gal-1 was recently identified as modulator of hematopoiesis. Considering that DCs play a crucial role in the initiation of a productive anti-cancer immune response, a link between extrinsic sialylation by the extracellular ST6Gal-1 on DC function needs to be investigated. We hypothesize that extrinsic α2,6 sialylation of DCs diminishes their maturation features upon lipopolysaccharide (LPS) stimulation. The main goal was to extrinsically α2,6 sialylate mice bone marrow derived DCs (BMDCs) and to evaluate their maturation and cytokine profiles upon LPS stimulation (by Flow Cytometry and ELISA, respectively). Unlike the hypothesis, we observed that BMDCs’ profile is not modulated, even using several approaches. In contrast, the consequence of lacking cell surface α2,6 Sias in DC maturation was assessed by analysing: 1) sialidase treated BMDCs, 2) BMDCs from mice lacking ST6Gal-1 and 3) DCs from mice airways, comparing wild type with ST6Gal-1 knockout mice. These results suggest that overall lack in α2,6 Sias is related with increased expression of major histocompatibility class II (MHC-II). Although appearing to be controversial findings, other intracellular mechanisms might be occurring upon LPS-induced BMDC activation, probably reducing extracellular ST6Gal-1 effect. In opposite, the modification observed in DC profile of ST6Gal-1 knockout mice might be related to its predisposition to a more severe inflammatory status. With this, the developed work opened future lines of investigation, namely exploring other factors involved in α2,6 (de)sialylation of DC, which might have influence in immunotherapy using DCs.