9 resultados para Clinical analysis. Near-infrared spectroscopy. Multivariate calibration
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão Industrial
Resumo:
Different oil-containing substrates, namely, used cooking oil (UCO), fatty acids-byproduct from biodiesel production (FAB) and olive oil deodorizer distillate (OODD) were tested as inexpensive carbon sources for the production of polyhydroxyalkanoates (PHA) using twelve bacterial strains, in batch experiments. The OODD and FAB were exploited for the first time as alternative substrates for PHA production. Among the tested bacterial strains, Cupriavidus necator and Pseudomonas resinovorans exhibited the most promising results, producing poly-3-hydroxybutyrate, P(3HB), form UCO and OODD and mcl-PHA mainly composed of 3-hydroxyoctanoate (3HO) and 3-hydroxydecanoate (3HD) monomers from OODD, respectively. Afterwards, these bacterial strains were cultivated in bioreactor. C. necator were cultivated in bioreactor using UCO as carbon source. Different feeding strategies were tested for the bioreactor cultivation of C. necator, namely, batch, exponential feeding and DO-stat mode. The highest overall PHA productivity (12.6±0.78 g L-1 day-1) was obtained using DO-stat mode. Apparently, the different feeding regimes had no impact on polymer thermal properties. However, differences in polymer‟s molecular mass distribution were observed. C. necator was also tested in batch and fed-batch modes using a different type of oil-containing substrate, extracted from spent coffee grounds (SCG) by super critical carbon dioxide (sc-CO2). Under fed-batch mode (DO-stat), the overall PHA productivity were 4.7 g L-1 day-1 with a storage yield of 0.77 g g-1. Results showed that SCG can be a bioresource for production of PHA with interesting properties. Furthermore, P. resinovorans was cultivated using OODD as substrate in bioreactor under fed-batch mode (pulse feeding regime). The polymer was highly amorphous, as shown by its low crystallinity of 6±0.2%, with low melting and glass transition temperatures of 36±1.2 and -16±0.8 ºC, respectively. Due to its sticky behavior at room temperature, adhesiveness and mechanical properties were also studied. Its shear bond strength for wood (67±9.4 kPa) and glass (65±7.3 kPa) suggests it may be used for the development of biobased glues. Bioreactor operation and monitoring with oil-containing substrates is very challenging, since this substrate is water immiscible. Thus, near-infrared spectroscopy (NIR) was implemented for online monitoring of the C. necator cultivation with UCO, using a transflectance probe. Partial least squares (PLS) regression was applied to relate NIR spectra with biomass, UCO and PHA concentrations in the broth. The NIR predictions were compared with values obtained by offline reference methods. Prediction errors to these parameters were 1.18 g L-1, 2.37 g L-1 and 1.58 g L-1 for biomass, UCO and PHA, respectively, which indicates the suitability of the NIR spectroscopy method for online monitoring and as a method to assist bioreactor control. UCO and OODD are low cost substrates with potential to be used in PHA batch and fed-batch production. The use of NIR in this bioprocess also opened an opportunity for optimization and control of PHA production process.
Resumo:
Three different treatments were applied on several specimens of dolomitic and calcitic marble, properly stained with rust to mimic real situations (the stone specimens were exposed to the natural environment for about six months in contact with rusted iron). Thirty six marble specimens, eighteen calcitic and eighteen dolomitic, were characterized before and after treatment and monitored throughout the cleaning tests. The specimens were characterized by SEM-EDS (Scanning Electron Microscopy coupled with Energy Dispersion System), XRD (XRay Diffraction), XRF (X-Ray Fluorescence), FTIR (Fourier Transform Infrared Spectroscopy) and color measurements. It was also made a microscopic and macroscopic analysis of the stone surface along with the tests of short and long term capillary absorption. A series of test trials were conducted in order to understand which concentrations and contact times best suits to this purpose, to confirm what had been written to date in the literature. We sought to develop new methods of treatment application, skipping the usual methods of applying chemical treatments on stone substrates, with the use of cellulose poultice, resorting to the agar, a gel already used in many other areas, being something new in this area, which possesses great applicability in the field of conservation of stone materials. After the application of the best methodology for cleaning, specimens were characterized again in order to understand which treatment was more effective and less harmful, both for the operator and the stone material. Very briefly conclusions were that for a very intense and deep penetration into the stone, a solution of 3.5% of SDT buffered with ammonium carbonate to pH around 7 applied with agar support would be indicated. For rust stains in its initial state, the use of Ammonium citrate at a concentration of 5% buffered with ammonium to pH 7 could be applied more than once until satisfactory results appear.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Conservação e Restauro, especialização em pintura sobre tela
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Física
Resumo:
Inorg. Chem., 2003, 42 (4), pp 938–940 DOI: 10.1021/ic0262886
Resumo:
RESUMO - Introdução: Os dispositivos médicos para diagnóstico in vitro (DMDIV) são testes de diagnóstico rápido que podem ser realizados em diversos contextos, seja na enfermaria, no departamento de urgência, no bloco operatório, no consultório médico, centros de enfermagem, farmácias, lares de terceira idade ou até na própria residência, uma vez que a sua utilização não requer formação especializada em técnicas de laboratório. Os DMDIV têm inúmeras finalidades: triagem de utentes, diagnóstico de situações agudas, monitorização de fármacos ou acompanhamento de doenças crónicas. Objectivos: conhecer as potenciais implicações operacionais, clínicas e económicas da implementação generalizada de DMDIV em instituições de saúde da região de Lisboa e Vale do Tejo, bem como conhecer o nível de utilização e opinião sobre DMDIV de médicos e enfermeiros da região de saúde de Lisboa e Vale do Tejo. Metodologia: foi realizado um estudo observacional, analítico e transversal. Como instrumento de recolha de dados, foi aplicado um questionário a uma amostra de conveniência constituída por médicos e enfermeiros a exercer funções em instituições hospitalares públicas e privadas e em instituições de cuidados de saúde primários da região de saúde de Lisboa e Vale do Tejo. Conclusão: a utilização de DMDIV permite diminuir o tempo de resposta do resultado analítico, o que se traduz numa maior rapidez do diagnóstico e numa intervenção clínica mais célere, com impacto ao nível da redução do número de admissões desnecessárias, do tempo de internamento e do número de consultas médicas, com a consequente redução do consumo de recursos hospitalares. Na região de saúde de Lisboa e Vale do Tejo, um número significativo de instituições de saúde disponibiliza este tipo de equipamentos portáteis que, de uma forma geral, têm uma boa aceitação por parte dos profissionais de saúde.
Resumo:
High reflective paints (cool paints) are used on flat roofs to reduce heat gains from the incidence of solar radiation and thus improve the thermal comfort and energy efficiency of buildings, especially in summer periods. Given the application potential of these paints on vertical surfaces, a research study has been developed to evaluate the thermal performance of reflective paints on walls under real exposure conditions. Accordingly, different reflective paints have been applied as the final coating of an ETICS type solution, on the facades of a full scale experimental cell built at LNEC campus. For being applied in an ETICS system a paint has to fulfill several requirements, whether aesthetic or functional (such as the adhesion between the coating layers or the durability of the insulation), essential for its efficient performance. Since this construction coating system is subject to a prolonged sun exposure, various problems may arise, such as paint degradation or deterioration of the thermal insulation properties, particularly when dark colors are applied. To evaluate the thermal performance of the chosen paints, the method of non-destructive analysis by Infrared Thermography was used. Thermography allows knowing the temperature distribution of facades by measuring the radiation emitted by their surfaces. To complement the thermographic diagnosis, thermocouples were placed between the insulation and the paint system of the experimental cell. Additional laboratory tests allowed the characterization of the optical properties (reflectance and emittance) of the different reflective paints used in this study. The comparative analysis of the thermal performance of reflective and conventional paints revealed that the reflective paint allows a reduction of the facade surface temperature, reducing the risk of loss of insulating properties of the ETICS system and thus ensuring its longevity and functionality. The color of the paint used affects, naturally, the reflective ability of the surface and may have an important role in energy balance of the building. This paper also showed the potential of infrared thermography in the evaluation of the thermal performance of reflective paints.
Resumo:
The development of devices based on heterostructured thin films of biomolecules conveys a huge contribution on biomedical field. However, to achieve high efficiency of these devices, the storage of water molecules into these heterostructures, in order to maintain the biological molecules hydrated, is mandatory. Such hydrated environment may be achieved with lipids molecules which have the ability to rearrange spontaneously into vesicles creating a stable barrier between two aqueous compartments. Yet it is necessary to find conditions that lead to the immobilization of whole vesicles on the heterostructures. In this work, the conditions that govern the deposition of open and closed liposomes of 1.2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (sodium Salt) (DPPG) onto polyelectrolytes cushions prepared by the layer-by-layer (LbL) method were analyzed. Electronic transitions of DPPG molecules as well as absorption coefficients were obtained by vacuum ultraviolet spectroscopy, while the elemental composition of the heterostructures was characterized by x-ray photoelectron spectroscopy (XPS). The presence of water molecules in the films was inferred by XPS and infrared spectroscopy. Quartz crystal microbalance (QCM) data analysis allowed to conclude that, in certain cases, the DPPG adsorbed amount is dependent of the bilayers number already adsorbed. Moreover, the adsorption kinetics curves of both adsorbed amount and surface roughness allowed to determine the kinetics parameters that are related with adsorption processes namely, electrostatic forces, liposomes diffusion and lipids re-organization on surface. Scaling exponents attained from atomic force microscopy images statistical analysis demonstrate that DPPG vesicles adsorption mechanism is ruled by the diffusion Villain model confirming that adsorption is governed by electrostatic forces. The power spectral density treatment enabled a thorough description of the accessible surface of the samples as well as of its inner structural properties. These outcomes proved that surface roughness influences the adsorption of DPPG liposomes onto surfaces covered by a polyelectrolyte layer. Thus, low roughness was shown to induce liposome rupture creating a lipid bilayer while high roughness allows the adsorption of whole liposomes. In addition, the fraction of open liposomes calculated from the normalized maximum adsorbed amounts decreases with the cushion roughness increase, allowing us to conclude that the surface roughness is a crucial variable that governs the adsorption of open or whole liposomes. This conclusion is fundamental for the development of well-designed sensors based on functional biomolecules incorporated in liposomes. Indeed, LbL films composed of polyelectrolytes and liposomes with and without melanin encapsulated were successfully applied to sensors of olive oil.