9 resultados para Central Bank Loss Functions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To study the macroeconomic effects of unconventional monetary policy across the different countries of the eurozone, I develop an identification scheme to disentangle conventional from non-conventional policy shocks, using futures contracts on overnight interest rates and the size of the European Central Bank balance sheet. Setting these shocks as endogenous variables in a structural vector autoregressive (SVAR) model, along with the CPI and the employment rate, estimated impulse response functions of policy to macroeconomic variables are studied. I find that unconventional policy shocks generated mixed effects in inflation but had a positive impact on employment, with the exception of Portugal, Spain, Greece and Italy where the employment response is close to zero or negative. The heterogeneity that characterizes the responses shows that the monetary policy measures taken in recent years were not sufficient to stabilize the economies of the eurozone countries under more severe economic conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Masters Thesis, presented as part of the requirements for the award of a Research Masters Degree in Economics from NOVA – School of Business and Economics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent financial crisis has drawn the attention of researchers and regulators to the importance of liquidity for stock market stability and efficiency. The ability of market-makers and investors to provide liquidity is constrained by the willingness of financial institutions to supply funding capital. This paper sheds light on the liquidity linkages between the Central Bank, Monetary Financial Institutions and market-makers as crucial elements to the well-functioning of markets. Results suggest the existence of causality between credit conditions and stock market liquidity for the Eurozone between 2003 and 2015. Similar evidence is found for the UK during the post-crisis period. Keywords: stock

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fractional central differences and derivatives are studied in this article. These are generalisations to real orders of the ordinary positive (even and odd) integer order differences and derivatives, and also coincide with the well known Riesz potentials. The coherence of these definitions is studied by applying the definitions to functions with Fourier transformable functions. Some properties of these derivatives are presented and particular cases studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Journal of Vibration and Control, Vol. 14, Nº 9-10

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Journal of Vibration and Control, 14(9–10): 1255–1266, 2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurological disorders are a major concern in modern societies, with increasing prevalence mainly related with the higher life expectancy. Most of the current available therapeutic options can only control and ameliorate the patients’ symptoms, often be-coming refractory over time. Therapeutic breakthroughs and advances have been hampered by the lack of accurate central nervous system (CNS) models. The develop-ment of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of novel therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmentally, anatomically and physiologically) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity). The in vitro recapitulation of CNS phenotypic and functional features requires the implementation of advanced culture strategies that enable to mimic the in vivo struc-tural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. This thesis aimed at the development of novel human 3D in vitro CNS models by integrat-ing agitation-based culture systems and a wide array of characterization tools. Neural differentiation of hNSC as 3D neurospheres was explored in Chapter 2. Here, it was demonstrated that human midbrain-derived neural progenitor cells from fetal origin (hmNPC) can generate complex tissue-like structures containing functional dopaminergic neurons, as well as astrocytes and oligodendrocytes. Chapter 3 focused on the development of cellular characterization assays for cell aggregates based on light-sheet fluorescence imaging systems, which resulted in increased spatial resolu-tion both for fixed samples or live imaging. The applicability of the developed human 3D cell model for preclinical research was explored in Chapter 4, evaluating the poten-tial of a viral vector candidate for gene therapy. The efficacy and safety of helper-dependent CAV-2 (hd-CAV-2) for gene delivery in human neurons was evaluated, demonstrating increased neuronal tropism, efficient transgene expression and minimal toxicity. The potential of human 3D in vitro CNS models to mimic brain functions was further addressed in Chapter 5. Exploring the use of 13C-labeled substrates and Nucle-ar Magnetic Resonance (NMR) spectroscopy tools, neural metabolic signatures were evaluated showing lineage-specific metabolic specialization and establishment of neu-ron-astrocytic shuttles upon differentiation. Chapter 6 focused on transferring the knowledge and strategies described in the previous chapters for the implementation of a scalable and robust process for the 3D differentiation of hNSC derived from human induced pluripotent stem cells (hiPSC). Here, software-controlled perfusion stirred-tank bioreactors were used as technological system to sustain cell aggregation and dif-ferentiation. The work developed in this thesis provides practical and versatile new in vitro ap-proaches to model the human brain. Furthermore, the culture strategies described herein can be further extended to other sources of neural phenotypes, including pa-tient-derived hiPSC. The combination of this 3D culture strategy with the implemented characterization methods represents a powerful complementary tool applicable in the drug discovery, toxicology and disease modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Double Degree