2 resultados para Caving mining


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Actualmente, com a massificação da utilização das redes sociais, as empresas passam a sua mensagem nos seus canais de comunicação, mas os consumidores dão a sua opinião sobre ela. Argumentam, opinam, criticam (Nardi, Schiano, Gumbrecht, & Swartz, 2004). Positiva ou negativamente. Neste contexto o Text Mining surge como uma abordagem interessante para a resposta à necessidade de obter conhecimento a partir dos dados existentes. Neste trabalho utilizámos um algoritmo de Clustering hierárquico com o objectivo de descobrir temas distintos num conjunto de tweets obtidos ao longo de um determinado período de tempo para as empresas Burger King e McDonald’s. Com o intuito de compreender o sentimento associado a estes temas foi feita uma análise de sentimentos a cada tema encontrado, utilizando um algoritmo Bag-of-Words. Concluiu-se que o algoritmo de Clustering foi capaz de encontrar temas através do tweets obtidos, essencialmente ligados a produtos e serviços comercializados pelas empresas. O algoritmo de Sentiment Analysis atribuiu um sentimento a esses temas, permitindo compreender de entre os produtos/serviços identificados quais os que obtiveram uma polaridade positiva ou negativa, e deste modo sinalizar potencias situações problemáticas na estratégia das empresas, e situações positivas passíveis de identificação de decisões operacionais bem-sucedidas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Qualquer assunto relacionado com a saúde é sempre um tema sensível, pela importância que tem junto da população, já que interage diretamente com o bem-estar das pessoas e, essencialmente, com a sensação de segurança que as estas pretendem ter na prestação dos cuidados básicos de saúde. Dados estatísticos mostram que a população está cada vez mais envelhecida, reforçando a importância da existência de bons centros hospitalares e de um bom Sistema Nacional de Saúde (SNS) (Plano Nacional de Saúde, 2010). Em Portugal, caso os pacientes necessitem de cuidados mais urgentes, podem recorrer ao Serviço de Urgências disponibilizado para toda a população através do SNS. No entanto, a gestão e planeamento deste serviço é complexa, dado este serviço ser frequentemente utilizado por pacientes que não necessitam de cuidados urgentes, levando a que os hospitais deixem de conseguir dar a resposta esperada, implicando a prestação por vezes um serviço de menor qualidade. Neste sentido, analisaram-se dados de um hospital do norte do país com o intuito de perceber o ponto de situação das urgências, de forma a encontrar padrões relevantes através da análise de clusters e de regras de associação. Começando pela análise de clusters, utilizaram-se apenas as variáveis que foram consideradas importantes para o problema, resultando da análise final 3 clusters. O primeiro cluster é constituído por elementos do sexo masculino de todas as idades, o segundo cluster por elementos do sexo masculino mais jovens e por elementos do sexo feminino até aos 60 anos e o terceiro cluster apenas por elementos do sexo feminino a partir dos 40 anos. No final verificaram-se muitas semelhanças entre os clusters 1 e 3, pois ambos continham os pacientes mais idosos, havendo um padrão comum no seu comportamento. No ano 2012 não houve registo de nenhuma epidemia, não havendo por isso nenhuma doença que se destacasse comparativamente às restantes. Concluiu-se também que na maior parte dos casos houve a necessidade de uma intervenção urgente (pulseira de cor Amarela), no entanto a maioria dos pacientes observados conseguiu regressar às suas habitações após as consultas nas Urgências Hospitalares, sem intervenções médicas adicionais. Relativamente às regras de associação, houve a necessidade de transformar e eliminar algumas variáveis que enviesassem o estudo. Após o processo da criação das regras de associação, percebeu-se que as regras eram muito similares entre si, apresentando uma maior confiança nas variáveis que apareceram em maior número (“Pacientes com pulseira de cor Amarela”, “distrito do Porto” ou “Alta Médica para a Residência”).