11 resultados para CLASSIFICATION AND REGRESSION TREE
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Grasslands in semi-arid regions, like Mongolian steppes, are facing desertification and degradation processes, due to climate change. Mongolia’s main economic activity consists on an extensive livestock production and, therefore, it is a concerning matter for the decision makers. Remote sensing and Geographic Information Systems provide the tools for advanced ecosystem management and have been widely used for monitoring and management of pasture resources. This study investigates which is the higher thematic detail that is possible to achieve through remote sensing, to map the steppe vegetation, using medium resolution earth observation imagery in three districts (soums) of Mongolia: Dzag, Buutsagaan and Khureemaral. After considering different thematic levels of detail for classifying the steppe vegetation, the existent pasture types within the steppe were chosen to be mapped. In order to investigate which combination of data sets yields the best results and which classification algorithm is more suitable for incorporating these data sets, a comparison between different classification methods were tested for the study area. Sixteen classifications were performed using different combinations of estimators, Landsat-8 (spectral bands and Landsat-8 NDVI-derived) and geophysical data (elevation, mean annual precipitation and mean annual temperature) using two classification algorithms, maximum likelihood and decision tree. Results showed that the best performing model was the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), using the decision tree. For maximum likelihood, the model that incorporated Landsat-8 bands with mean annual precipitation (Model 5) and the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), achieved the higher accuracies for this algorithm. The decision tree models consistently outperformed the maximum likelihood ones.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Applied and Environmental Microbiology, Vol. 73, No.4
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
In a world that has moved away from narratives based on the idea of progress, the past has established itself as a place of reference: confirming to ourselves that what we were is indispensible for sustaining what we think we are. The recovery of the past is thus one of the most common symbolic instruments used in negotiating identities. The cultural practices that have recourse to representation mechanisms that call on the past in order to consider the present always end up translating themselves, insofar as they fragment, reorganize and interpret it in their transformation, or, to use a formula that has become unavoidable, in their “invention”. Patrimonialization is one such practice. It associates the notion of heritage – which is not a given fact, but rather a socially constructed classification, and therefore one that is constantly being negotiated – with specific objects that come to serve as cultural representations of the groups who consider themselves to be their rightful owners. In the Lisbon Metropolitan Area, as in other ethnographic contexts, patrimonialization encompasses things as diverse as landscapes, monuments, popular architecture, handicrafts, local feast days/processions/pilgrimages and people; all things that can, once transformed into material representations of the past, serve as arguments for the identity fictions of the people who inhabit them.
Resumo:
Nowadays, reducing energy consumption is one of the highest priorities and biggest challenges faced worldwide and in particular in the industrial sector. Given the increasing trend of consumption and the current economical crisis, identifying cost reductions on the most energy-intensive sectors has become one of the main concerns among companies and researchers. Particularly in industrial environments, energy consumption is affected by several factors, namely production factors(e.g. equipments), human (e.g. operators experience), environmental (e.g. temperature), among others, which influence the way of how energy is used across the plant. Therefore, several approaches for identifying consumption causes have been suggested and discussed. However, the existing methods only provide guidelines for energy consumption and have shown difficulties in explaining certain energy consumption patterns due to the lack of structure to incorporate context influence, hence are not able to track down the causes of consumption to a process level, where optimization measures can actually take place. This dissertation proposes a new approach to tackle this issue, by on-line estimation of context-based energy consumption models, which are able to map operating context to consumption patterns. Context identification is performed by regression tree algorithms. Energy consumption estimation is achieved by means of a multi-model architecture using multiple RLS algorithms, locally estimated for each operating context. Lastly, the proposed approach is applied to a real cement plant grinding circuit. Experimental results prove the viability of the overall system, regarding both automatic context identification and energy consumption estimation.
Resumo:
The purpose of this thesis is to investigate how far the education level of the second or third generation of publicly traded German family firms affects the post-succession firm performance. By conducting a correlational and regression design, the aim is to examine how several variables influence the performance of family firms. Performance measures, for example ROA and Tobin’s q and variables, like Education level and succession periods, examine analytically that a positive succession trend will occur. However, with the used model, only a less rigid model shows empirical evidence.