2 resultados para CHARGE CONTROL MODEL


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Generally, smart campus applications do not consider the role of the user with his/her position in a university environment, consequently irrelevant information is delivered to the users. This dissertation proposes a location-based access control model, named Smart-RBAC, extending the functionality of Role-based Access Control Model (RBAC) by including user’s location as the contextual attribute, to solve the aforementioned problem. Smart-RBAC model is designed with a focus on content delivery to the user in order to offer a feasible level of flexibility, which was missing in the existing location-based access control models. An instance of the model, derived from Liferay’s RBAC, is implemented by creating a portal application to test and validate the Smart-RBAC model. Additionally, portlet-based applications are developed to assess the suitability of the model in a smart campus environment. The evaluation of the model, based on a popular theoretical framework, demonstrates the model’s capability to achieve some security goals like “Dynamic Separation of Duty” and “Accountability”. We believe that the Smart-RBAC model will improve the existing smart campus applications since it utilizes both, role and location of the user, to deliver content.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use, manipulation and application of electrical currents, as a controlled interference mechanism in the human body system, is currently a strong source of motivation to researchers in areas such as clinical, sports, neuroscience, amongst others. In electrical stimulation (ES), the current applied to tissue is traditionally controlled concerning stimulation amplitude, frequency and pulse-width. The main drawbacks of the transcutaneous ES are the rapid fatigue induction and the high discomfort induced by the non-selective activation of nervous fibers. There are, however, electrophysiological parameters whose response, like the response to different stimulation waveforms, polarity or a personalized charge control, is still unknown. The study of the following questions is of great importance: What is the physiological effect of the electric pulse parametrization concerning charge, waveform and polarity? Does the effect change with the clinical condition of the subjects? The parametrization influence on muscle recruitment can retard fatigue onset? Can parametrization enable fiber selectivity, optimizing the motor fibers recruitment rather than the nervous fibers, reducing contraction discomfort? Current hardware solutions lack flexibility at the level of stimulation control and physiological response assessment. To answer these questions, a miniaturized, portable and wireless controlled device with ES functions and full integration with a generic biosignals acquisition platform has been created. Hardware was also developed to provide complete freedom for controlling the applied current with respect to the waveform, polarity, frequency, amplitude, pulse-width and duration. The impact of the methodologies developed is successfully applied and evaluated in the contexts of fundamental electrophysiology, psycho-motor rehabilitation and neuromuscular disorders diagnosis. This PhD project was carried out in the Physics Department of Faculty of Sciences and Technology (FCT-UNL), in straight collaboration with PLUX - Wireless Biosignals S.A. company and co-funded by the Foundation for Science and Technology.