22 resultados para Broken Promises


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A bone breccia from Goldra, near Loulé, is studied. It corresponds to the infilling of a karst depression, consisting of: rather worn and probably transported dolomite pebbles at the bottom; accumulations of frequently burnt bone scraps, much broken and with acute edges (no transport), certainly debris of human food, suggesting habitat level (s); in association with the former, stone (flint, quartz, quartzite, graywacke) rather uncharacteristic artifacts that seem compatible with middle and upper Paleolithic, or with Epipaleolithic; and small mammal teeth and bones. Fauna includes an extinct species, Microtus brecciensis recognized for the first time in Portugal. It is not older than Riss-Wiirm interglacial, and may be of this age or later, maybe that of one of wurm's first interstades. Fauna points out to a varied landscape with open country and woods; and to a rather warm and dry temperate, or dry subtropical mediterranean climate. Climate differences should not be significant in comparison with the extant situation. The presence of the mammal species found so far is consistent with modern distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This Thesis describes the application of automatic learning methods for a) the classification of organic and metabolic reactions, and b) the mapping of Potential Energy Surfaces(PES). The classification of reactions was approached with two distinct methodologies: a representation of chemical reactions based on NMR data, and a representation of chemical reactions from the reaction equation based on the physico-chemical and topological features of chemical bonds. NMR-based classification of photochemical and enzymatic reactions. Photochemical and metabolic reactions were classified by Kohonen Self-Organizing Maps (Kohonen SOMs) and Random Forests (RFs) taking as input the difference between the 1H NMR spectra of the products and the reactants. The development of such a representation can be applied in automatic analysis of changes in the 1H NMR spectrum of a mixture and their interpretation in terms of the chemical reactions taking place. Examples of possible applications are the monitoring of reaction processes, evaluation of the stability of chemicals, or even the interpretation of metabonomic data. A Kohonen SOM trained with a data set of metabolic reactions catalysed by transferases was able to correctly classify 75% of an independent test set in terms of the EC number subclass. Random Forests improved the correct predictions to 79%. With photochemical reactions classified into 7 groups, an independent test set was classified with 86-93% accuracy. The data set of photochemical reactions was also used to simulate mixtures with two reactions occurring simultaneously. Kohonen SOMs and Feed-Forward Neural Networks (FFNNs) were trained to classify the reactions occurring in a mixture based on the 1H NMR spectra of the products and reactants. Kohonen SOMs allowed the correct assignment of 53-63% of the mixtures (in a test set). Counter-Propagation Neural Networks (CPNNs) gave origin to similar results. The use of supervised learning techniques allowed an improvement in the results. They were improved to 77% of correct assignments when an ensemble of ten FFNNs were used and to 80% when Random Forests were used. This study was performed with NMR data simulated from the molecular structure by the SPINUS program. In the design of one test set, simulated data was combined with experimental data. The results support the proposal of linking databases of chemical reactions to experimental or simulated NMR data for automatic classification of reactions and mixtures of reactions. Genome-scale classification of enzymatic reactions from their reaction equation. The MOLMAP descriptor relies on a Kohonen SOM that defines types of bonds on the basis of their physico-chemical and topological properties. The MOLMAP descriptor of a molecule represents the types of bonds available in that molecule. The MOLMAP descriptor of a reaction is defined as the difference between the MOLMAPs of the products and the reactants, and numerically encodes the pattern of bonds that are broken, changed, and made during a chemical reaction. The automatic perception of chemical similarities between metabolic reactions is required for a variety of applications ranging from the computer validation of classification systems, genome-scale reconstruction (or comparison) of metabolic pathways, to the classification of enzymatic mechanisms. Catalytic functions of proteins are generally described by the EC numbers that are simultaneously employed as identifiers of reactions, enzymes, and enzyme genes, thus linking metabolic and genomic information. Different methods should be available to automatically compare metabolic reactions and for the automatic assignment of EC numbers to reactions still not officially classified. In this study, the genome-scale data set of enzymatic reactions available in the KEGG database was encoded by the MOLMAP descriptors, and was submitted to Kohonen SOMs to compare the resulting map with the official EC number classification, to explore the possibility of predicting EC numbers from the reaction equation, and to assess the internal consistency of the EC classification at the class level. A general agreement with the EC classification was observed, i.e. a relationship between the similarity of MOLMAPs and the similarity of EC numbers. At the same time, MOLMAPs were able to discriminate between EC sub-subclasses. EC numbers could be assigned at the class, subclass, and sub-subclass levels with accuracies up to 92%, 80%, and 70% for independent test sets. The correspondence between chemical similarity of metabolic reactions and their MOLMAP descriptors was applied to the identification of a number of reactions mapped into the same neuron but belonging to different EC classes, which demonstrated the ability of the MOLMAP/SOM approach to verify the internal consistency of classifications in databases of metabolic reactions. RFs were also used to assign the four levels of the EC hierarchy from the reaction equation. EC numbers were correctly assigned in 95%, 90%, 85% and 86% of the cases (for independent test sets) at the class, subclass, sub-subclass and full EC number level,respectively. Experiments for the classification of reactions from the main reactants and products were performed with RFs - EC numbers were assigned at the class, subclass and sub-subclass level with accuracies of 78%, 74% and 63%, respectively. In the course of the experiments with metabolic reactions we suggested that the MOLMAP / SOM concept could be extended to the representation of other levels of metabolic information such as metabolic pathways. Following the MOLMAP idea, the pattern of neurons activated by the reactions of a metabolic pathway is a representation of the reactions involved in that pathway - a descriptor of the metabolic pathway. This reasoning enabled the comparison of different pathways, the automatic classification of pathways, and a classification of organisms based on their biochemical machinery. The three levels of classification (from bonds to metabolic pathways) allowed to map and perceive chemical similarities between metabolic pathways even for pathways of different types of metabolism and pathways that do not share similarities in terms of EC numbers. Mapping of PES by neural networks (NNs). In a first series of experiments, ensembles of Feed-Forward NNs (EnsFFNNs) and Associative Neural Networks (ASNNs) were trained to reproduce PES represented by the Lennard-Jones (LJ) analytical potential function. The accuracy of the method was assessed by comparing the results of molecular dynamics simulations (thermal, structural, and dynamic properties) obtained from the NNs-PES and from the LJ function. The results indicated that for LJ-type potentials, NNs can be trained to generate accurate PES to be used in molecular simulations. EnsFFNNs and ASNNs gave better results than single FFNNs. A remarkable ability of the NNs models to interpolate between distant curves and accurately reproduce potentials to be used in molecular simulations is shown. The purpose of the first study was to systematically analyse the accuracy of different NNs. Our main motivation, however, is reflected in the next study: the mapping of multidimensional PES by NNs to simulate, by Molecular Dynamics or Monte Carlo, the adsorption and self-assembly of solvated organic molecules on noble-metal electrodes. Indeed, for such complex and heterogeneous systems the development of suitable analytical functions that fit quantum mechanical interaction energies is a non-trivial or even impossible task. The data consisted of energy values, from Density Functional Theory (DFT) calculations, at different distances, for several molecular orientations and three electrode adsorption sites. The results indicate that NNs require a data set large enough to cover well the diversity of possible interaction sites, distances, and orientations. NNs trained with such data sets can perform equally well or even better than analytical functions. Therefore, they can be used in molecular simulations, particularly for the ethanol/Au (111) interface which is the case studied in the present Thesis. Once properly trained, the networks are able to produce, as output, any required number of energy points for accurate interpolations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(l) The Pacific basin (Pacific area) may be regarded as moving eastwards like a double zip fastener relative to the continents and their respective plates (Pangaea area): opening in the East and closing in the West. This movement is tracked by a continuous mountain belt, the collision ages of which increase westwards. (2) The relative movements between the Pacific area and the Pangaea area in the W-EfE-W direction are generated by tidal forces (principle of hypocycloid gearing), whereby the lower mantle and the Pacific basin or area (Pacific crust = roof of the lower mantle?) rotate somewhat faster eastwards around the Earth's spin axis relative to the upper mantle/crust system with the continents and their respective plates (Pangaea area) (differential rotation). (3) These relative West to East/East to West displacements produce a perpetually existing sequence of distinct styles of opening and closing oeean basins, exemplified by the present East to West arrangement of ocean basins around the globe (Oceanic or Wilson Cycle: Rift/Red Sea style; Atlantic style; Mediterranean/Caribbean style as eastwards propagating tongue of the Pacific basin; Pacific style; Collision/Himalayas style). This sequence of ocean styles, of which the Pacific ocean is a part, moves eastwards with the lower mantle relative to the continents and the upper-mantle/crust of the Pangaea area. (4) Similarly, the collisional mountain belt extending westwards from the equator to the West of the Pacific and representing a chronological sequence of collision zones (sequential collisions) in the wake of the passing of the Pacific basin double zip fastener, may also be described as recording the history of oceans and their continental margins in the form of successive Wilson Cycles. (5) Every 200 to 250 m.y. the Pacific basin double zip fastener, the sequence of ocean styles of the Wilson Cycle and the eastwards growing collisional mountain belt in their wake complete one lap around the Earth. Two East drift lappings of 400 to 500 m.y. produce a two-lap collisional mountain belt spiral around a supercontinent in one hemisphere (North or South Pangaea). The Earth's history is subdivided into alternating North Pangaea growth/South Pangaea breakup eras and South Pangaea growth/North Pangaea breakup eras. Older North and South Pangaeas and their collisional mountain belt spirals may be reconstructed by rotating back the continents and orogenic fragments of a broken spiral (e.g. South Pangaea, Gondwana) to their previous Pangaea growth era orientations. In the resulting collisional mountain belt spiral, pieced together from orogenic segments and fragments, the collision ages have to increase successively towards the West. (6) With its current western margin orientated in a West-East direction North America must have collided during the Late Cretaceous Laramide orogeny with the northern margin of South America (Caribbean Andes) at the equator to the West of the Late Mesozoic Pacific. During post-Laramide times it must have rotated clockwise into its present orientation. The eastern margin of North America has never been attached to the western margin of North Africa but only to the western margin of Europe. (7) Due to migration eastwards of the sequence of ocean styles of the Wilson Cycle, relative to a distinct plate tectonic setting of an ocean, a continent or continental margin, a future or later evolutionary style at the Earth's surface is always depicted in a setting simultaneously developed further to the West and a past or earlier style in a setting simultaneously occurring further to the East. In consequence, ahigh probability exists that up to the Early Tertiary, Greenland (the ArabiaofSouth America?) occupied a plate tectonic setting which is comparable to the current setting of Arabia (the Greenland of Africa?). The Late Cretaceous/Early Tertiary Eureka collision zone (Eureka orogeny) at the northern margin of the Greenland Plate and on some of the Canadian Arctic Islands is comparable with the Middle to Late Tertiary Taurus-Bitlis-Zagros collision zone at the northern margin of the Arabian Plate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Masters Thesis – Academic Year 2007/2008 - European Master’s Degree in Human Rights and Democratization (E.MA) - European Inter-university Centre for Human Rights and Democratization (EIUC) -Faculdade de Direito, Universidade Nova de Lisboa (UNL)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(l) The Pacific basin (Pacific area) may be regarded as moving eastwards like a double zip fastener relative to the continents and their respective plates (Pangaea area): opening in the East and closing in the West. This movement is tracked by a continuous mountain belt, the collision ages of which increase westwards. (2) The relative movements between the Pacific area and the Pangaea area in the W-E/E-W direction are generated by tidal forces (principle of hypocycloid gearing), whereby the lower mantle and the Pacific basin or area (Pacific crust = roof of the lower mantle?) rotate somewhat faster eastwards around the Earth's spin axis relative to the upper mantle/crust system with the continents and their respective plates (Pangaea area) (differential rotation). (3) These relative West to East/East to West displacements produce a perpetually existing sequence of distinct styles of opening and closing ocean basins, exemplified by the present East to West arrangement of ocean basins around the globe (Oceanic or Wilson Cycle: Rift/Red Sea style; Atlantic style; Mediterranean/Caribbean style as eastwards propagating tongue of the Pacific basin; Pacific style; Collision/Himalayas style). This sequence of ocean styles, of which the Pacific ocean is a part, moves eastwards with the lower mantle relative to the continents and the upper-mantle/crust of the Pangaea area. (4) Similarly, the collisional mountain belt extending westwards from the equator to the West of the Pacific and representing a chronological sequence of collision zones (sequential collisions) in the wake of the passing of the Pacific basin double zip fastener, may also be described as recording the history of oceans and their continental margins in the form of successive Wilson Cycles. (5) Every 200 to 250 m.y. the Pacific basin double zip fastener, the sequence of ocean styles of the Wilson Cycle and the eastwards growing collisional mountain belt in their wake complete one lap around the Earth. Two East drift lappings of 400 to 500 m.y. produce a two-lap collisional mountain belt spiral around a supercontinent in one hemisphere (North or South Pangaea). The Earth's history is subdivided into alternating North Pangaea growth/South Pangaea breakup eras and South Pangaea growth/North Pangaea breakup eras. Older North and South Pangaeas and their collisional mountain belt spirals may be reconstructed by rotating back the continents and orogenic fragments of a broken spiral (e.g. South Pangaea, Gondwana) to their previous Pangaea growth era orientations. In the resulting collisional mountain belt spiral, pieced together from orogenic segments and fragments, the collision ages have to increase successively towards the West. (6) With its current western margin orientated in a West-East direction North America must have collided during the Late Cretaceous Laramide orogeny with the northern margin of South America (Caribbean Andes) at the equator to the West of the Late Mesozoic Pacific. During post-Laramide times it must have rotated clockwise into its present orientation. The eastern margin of North America has never been attached to the western margin of North Africa but only to the western margin of Europe. (7) Due to migration eastwards of the sequence of ocean styles of the Wilson Cycle, relative to a distinct plate tectonic setting of an ocean, a continent or continental margin, a future or later evolutionary style at the Earth's surface is always depicted in a setting simultaneously developed further to the West and a past or earlier style in a setting simultaneously occurring further to the East. In consequence, ahigh probability exists that up to the Early Tertiary, Greenland (the ArabiaofSouth America?) occupied a plate tectonic setting which is comparable to the current setting of Arabia (the Greenland of Africa?). The Late Cretaceous/Early Tertiary Eureka collision zone (Eureka orogeny) at the northern margin of the Greenland Plate and on some of the Canadian Arctic Islands is comparable with the Middle to Late Tertiary Taurus-Bitlis-Zagros collision zone at the northern margin of the Arabian Plate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation presented at the Faculty of Sciences and Technology of the New University of Lisbon in fulfillment of the requirements for the Master degree in Conservation Science

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Journal of Biological Inorganic Chemistry (2010)15: 271-281

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Informática

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RESUMO - Visa-se explicitar a origem, a razão de ser, a natureza e o que se perspectiva da relação entre a Epidemiologia e a Saúde Pública, através de uma leitura histórica. As duas entidades foram-se definindo e fazendo sentido em conjunto, com sucessos e, também, muita polémica, desde há milénios e até meados do século XIX. Nesta época, uma combinação de circunstâncias proporcionou-lhes uma explosão de crescimento e de definição, de par com várias outras áreas disciplinares. Desde o antigo relato bíblico de como boa alimentação explica o bom estado de saúde, até à valorização científica das condicionantes sociais e económicas da saúde por Marmot e Rose, passando por «miasmas» causando doença e pela deslocação do conceito de risco individual de saúde para o de risco populacional — com as implicações inerentes a essa importante inovação —, este percurso permite identificar as fundações de tão notável simbiose, explicar o estado presente, vê-la evoluir e achar nela o significado do património hoje disponível, e o que ele promete. Algumas discrepâncias quanto à designação dos seus métodos, bem como a contínua discussão quanto à sua verdadeira natureza e orientação futura, atestam a juventude da Epidemiologia como disciplina científica. Entretanto, a Saúde Pública esforça-se por manter a sua essência integradora, à medida que outras disciplinas contribuem mais para que concretize os seus objectivos; é desafiada pela exposição das populações, em larga escala, a factores de doença, por vezes de intensidade mínima, e pelo surgimento de novas doenças ou a ampliação do volume de outras na população, muitas vezes não respeitando fronteiras. A história dessa simbiose mostra bem que conhecer o modo como uma doença se origina permite controlá-la na população, ou mesmo evitá-la, e que é grande o número de problemas que, em sinergia, as duas disciplinas podem clarificar e resolver. Assim, a Epidemiologia oferece à Saúde Pública explicações (olhos, inteligência e linguagem) para os problemas de saúde das populações — o que permite à segunda saber sobre o quê agir —, cenários de possível evolução dos problemas — o que permite aos decisores optarem em função de diferentes pressupostos, sobre como agir — e capacidade de juízo sobre os resultados das acções empreendidas, em simultâneo com a elevação do nível de consciência, de compreensão e de intervenção quanto ao que se está a passar, tanto pelos profissionais, como pela população — transferência do conhecimento. Facilmente se antecipa que a relação entre as duas disciplinas irá evoluir para maior complexidade e, também, solicitação e exigência da Saúde Pública sobre a Epidemiologia, que terá que corresponder em utilidade. E esta, continuando a subespecializar-se e a sofisticar-se tanto nos métodos, como nos enfoques sobre categorias específicas de factores, precisará de progredir muito na gestão da sua consistência enquanto corpo de conhecimento integrado e com peculiaridades metodológicas, à semelhança da Saúde Pública.O modo como evoluirá a relação entre ambas depende ainda da evolução dos próprios problemas, conceitos, teorias e soluções relacionados com a saúde das populações, e ainda do desenvolvimento das demais disciplinas chamadas à integração por ambas, para enfrentarem esses desafios. Nomeadamente, a Epidemiologia terá que gerir com perícia dificuldades já identificadas, como: incorporar métodos qualitativos de investigação na sua fortíssima tradição e cultura quantitativa; operacionalizar satisfatoriamente o conceito de «risco atribuível na população», ao serviço da definição de prioridades de acção dirigida às necessidades de saúde; aperfeiçoar modelos de interpretação causal que respeitem a multicausalidade; aproveitar as técnicas estatísticas de análise multivariada, sem se perder na abstracção dos seus modelos; desenvolver a investigação nas dimensões positivas de saúde, além da doença, para contribuir melhor para a realização da Saúde Pública, sua principal cliente e fornecedora de oportunidades.--------------------------ABSTRACT - The aim of the author is to explicit the origin, the rationale, the nature and the prospects of the relationship between Epidemiology and Public health, through an historic approach. The two entities have been defining and making sense together, by achieving successes, but also with much controversy, since millennia ago, until mid XIX century. A combination of circumstances provided them the opportunity for an explosion of growth and definition, then, alongside several other disciplines. From the ancient biblical report on how good food explains good health, up to the scientific appreciation of both social and economical constraints to health by Marmot and Rose, passing through «miasma» causing disease and through displacing from individual health risk to population risk — with the inherent implications of that important innovation —, this route allows the identification of the foundations of such remarkable symbiosis, the explanation of current status, to see its evolution and find in it the meaning of today’s heritage and what it promises. Some discrepancies on the name of its methods, as well as the continuing discussion about its true nature and future orientation, attest Epidemiology’s youth as a scientific discipline. Meanwhile, Public Health strives to keep its integrating essence, while other disciplines increasingly contribute so that it achieves its objectives; it is challenged by large scale population exposure to disease factors, sometimes with a minimum intensity, and by new diseases emerging in the population or by old ones getting amplified, often not respecting regions boundaries. The history of such a symbiosis shows that knowing the way a disease is generated allows to control it in the population, or even to avoid it, and that the number of problems that the two disciplines are able to clarify and solve together in synergy is considerable. Therefore, Epidemiology offers Public Health explanations (eyes, intelligence and language) for populations’s health problems — allowing that the latter knows on what to act —, scenarios on how problems may tend to evolve — allowing decision-makers to make their choices as a function of different assumptions, on how to act — and judgement capabilities on the results of already undertaken actions, accompanied by the raising of conscience level, understanding and intervention of what is going on by both professionals and the population – knowledge transfer. It is easy to anticipate that the relationship between both disciplines will develop towards increasing complexity and demand from Public Health to Epidemiology, and that this one will have to correspond in usefulness. And the latter, while continuing its subspecialisation and sophistication either in its methods, or in its approaches to specific factor categories, will need to progress in managing its consistency as an integrated body of knowledge having methodological peculiarities, similarly to Public Health. Further, the way the relationship between both will evolve depends on the evolution of the problems themselves, of the concepts, theories and solutions related to the health of populations, and on the development of remaining disciplines called to integration by both, in other to face those problems. Namely, Epidemiology will have to manage with expertise some already known difficulties, as: the inclusion of qualitative research methods in its very strong quantitative tradition and culture; to grant satisfactory operation to the «population attributable risk» concept, in support to the definition of action priorities envisaging health needs; to improve causal interpretation models that comply with multicausality; to take advantage of multivariate statistical techniques, without get

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis submitted in Trinity Term 2001 for the degree of Master of Philosophy, Worcester College, Oxford

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation to obtain the degree of Master in Electrical and Computer Engineering

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pascoa and Seghir (2009) noticed that when collateralized promises become subject to utility penalties on default, Ponzi schemes may occur. However, equilibrium exists in some interesting cases. Under low penalties, equilibrium exists if the collateral does not yield utility (for example, when it is a productive asset or a security). Equilibrium exists also under more severe penalties and collateral utility gains, when the promise or the collateral are nominal assets and the margin requirements are endogenous: relative inflation rates and margin coefficients can make the income effects dominate the penalty effects. An equilibrium refinement avoids no-trade equilibria with unduly repayment beliefs. Our refinement differs from the one used by Dubey, Geanakoplos and Shubik (2005) as it does not eliminate no trade equilibria whose low delivery rates are consistent with the propensity to default of agents that are on the verge of selling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores