4 resultados para Broadcasting


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho de Projecto de Mestrado em Novos Media e Práticas Web

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho de projecto apresentado para o cumprimento dos requisitos necessários à obtenção do grau de Mestre em Novos Média e Práticas Web

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The particular characteristics and affordances of technologies play a significant role in human experience by defining the realm of possibilities available to individuals and societies. Some technological configurations, such as the Internet, facilitate peer-to-peer communication and participatory behaviors. Others, like television broadcasting, tend to encourage centralization of creative processes and unidirectional communication. In other instances still, the affordances of technologies can be further constrained by social practices. That is the case, for example, of radio which, although technically allowing peer-to-peer communication, has effectively been converted into a broadcast medium through the legislation of the airwaves. How technologies acquire particular properties, meanings and uses, and who is involved in those decisions are the broader questions explored here. Although a long line of thought maintains that technologies evolve according to the logic of scientific rationality, recent studies demonstrated that technologies are, in fact, primarily shaped by social forces in specific historical contexts. In this view, adopted here, there is no one best way to design a technological artifact or system; the selection between alternative designs—which determine the affordances of each technology—is made by social actors according to their particular values, assumptions and goals. Thus, the arrangement of technical elements in any technological artifact is configured to conform to the views and interests of those involved in its development. Understanding how technologies assume particular shapes, who is involved in these decisions and how, in turn, they propitiate particular behaviors and modes of organization but not others, requires understanding the contexts in which they are developed. It is argued here that, throughout the last century, two distinct approaches to the development and dissemination of technologies have coexisted. In each of these models, based on fundamentally different ethoi, technologies are developed through different processes and by different participants—and therefore tend to assume different shapes and offer different possibilities. In the first of these approaches, the dominant model in Western societies, technologies are typically developed by firms, manufactured in large factories, and subsequently disseminated to the rest of the population for consumption. In this centralized model, the role of users is limited to selecting from the alternatives presented by professional producers. Thus, according to this approach, the technologies that are now so deeply woven into human experience, are primarily shaped by a relatively small number of producers. In recent years, however, a group of three interconnected interest groups—the makers, hackerspaces, and open source hardware communities—have increasingly challenged this dominant model by enacting an alternative approach in which technologies are both individually transformed and collectively shaped. Through a in-depth analysis of these phenomena, their practices and ethos, it is argued here that the distributed approach practiced by these communities offers a practical path towards a democratization of the technosphere by: 1) demystifying technologies, 2) providing the public with the tools and knowledge necessary to understand and shape technologies, and 3) encouraging citizen participation in the development of technologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is devoted to the broadband wireless transmission techniques, which are serious candidates to be implemented in future broadband wireless and cellular systems, aiming at providing high and reliable data transmission and concomitantly high mobility. In order to cope with doubly-selective channels, receiver structures based on OFDM and SC-FDE block transmission techniques, are proposed, which allow cost-effective implementations, using FFT-based signal processing. The first subject to be addressed is the impact of the number of multipath components, and the diversity order, on the asymptotic performance of OFDM and SC-FDE, in uncoded and for different channel coding schemes. The obtained results show that the number of relevant separable multipath components is a key element that influences the performance of OFDM and SC-FDE schemes. Then, the improved estimation and detection performance of OFDM-based broadcasting systems, is introduced employing SFN (Single Frequency Network) operation. An initial coarse channel is obtained with resort to low-power training sequences estimation, and an iterative receiver with joint detection and channel estimation is presented. The achieved results have shown very good performance, close to that with perfect channel estimation. The next topic is related to SFN systems, devoting special attention to time-distortion effects inherent to these networks. Typically, the SFN broadcast wireless systems employ OFDM schemes to cope with severely time-dispersive channels. However, frequency errors, due to CFO, compromises the orthogonality between subcarriers. As an alternative approach, the possibility of using SC-FDE schemes (characterized by reduced envelope fluctuations and higher robustness to carrier frequency errors) is evaluated, and a technique, employing joint CFO estimation and compensation over the severe time-distortion effects, is proposed. Finally, broadband mobile wireless systems, in which the relative motion between the transmitter and receiver induces Doppler shift which is different or each propagation path, is considered, depending on the angle of incidence of that path in relation to the direction of travel. This represents a severe impairment in wireless digital communications systems, since that multipath propagation combined with the Doppler effects, lead to drastic and unpredictable fluctuations of the envelope of the received signal, severely affecting the detection performance. The channel variations due this effect are very difficult to estimate and compensate. In this work we propose a set of SC-FDE iterative receivers implementing efficient estimation and tracking techniques. The performance results show that the proposed receivers have very good performance, even in the presence of significant Doppler spread between the different groups of multipath components.