6 resultados para Below-the-line


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The initial goal of this work was the development of a supported liquid membrane (SLM) bioreactor for the remediation of vaccine production effluents contaminated with a highly toxic organomercurial – thiomersal. Therefore, two main aspects were focused on: 1) the development of a stable supported liquid membrane – using room temperature ionic liquids (RTILs) – for the selective transport of thiomersal from the wastewater to a biological compartment, 2) study of the biodegradation kinetics of thiomersal to metallic mercury by a Pseudomonas putida strain. The first part of the work focused on the evaluation of the physicochemical properties of ionic liquids and on the SLMs’ operational stability. The results obtained showed that, although it is possible to obtain a SLM with a high stability, water possesses nonnegligible solubility in the RTILs studied. The formation of water clusters inside the hydrophobic ionic liquid was identified and found to regulate the transport of water and small ions. In practical terms, this meant that, although it was possible to transport thiomersal from the vaccine effluent to the biological compartment, complete isolation of the microbial culture could not be guaranteed and the membrane might ultimately be permeable to other species present in the aqueous vaccine wastewater. It was therefore decided not to operate the initially targeted integrated system but, instead, the biological system by itself. Additionally, attention was given to the development of a thorough understanding of the transport mechanisms involved in the solubilisation and transport of water through supported liquid membranes with RTILs as well as to the evaluation of the effect of water uptake by the SLM in the transport mechanisms of water-soluble solutes and its effect on SLM performance. The results obtained highlighted the determinant role played by water – solubilised inside the ionic liquids – on the transport mechanism. It became clear that the transport mechanism of water and water-soluble solutes through SLMs with [CnMIM][PF6] RTILs was regulated by the dynamics of water clusters inside the RTIL, rather than by molecular diffusion through the bulk of the ionic liquid. Although the stability tests vi performed showed that there were no significant losses of organic phase from the membrane pores, the formation of water clusters inside the ionic liquid, which constitute new, non-selective environments for solute transport, leads to a clear deterioration of SLM performance and selectivity. Nevertheless, electrical impedance spectroscopy characterisation of the SLMs showed that the formation of water clusters did not seem to have a detrimental effect on the SLMs’ electrical characteristics and highlighted the potential of using this type of membranes in electrochemical applications with low resistance requirements. The second part of the work studied the kinetics of thiomersal degradation by a pure culture of P. putida spi3 strain, in batch culture and using a synthe tic wastewater. A continuous ly stirred tank reactor fed with the synthetic wastewater was also operated and the bioreactor’s performance and robustness, when exposed to thiomersal shock loads, were evaluated. Finally, a bioreactor for the biological treatment of a real va ccine production effluent was set up and operated at different dilution rates. Thus it was possible to treat a real thiomersal-contaminated effluent, lowering the outlet mercury concentration to values below the European limit for mercury effluent discharges.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper examines the job quality in Europe. It is based on the results of the Fourth European Foundation Survey on working conditions covering different dimensions including work organisation, job content, autonomy at work, aspects of worker dignity, working time and work-life balance, working conditions and safety in the workplace. The results point to the existence of great diversity in the job quality across Europe and the north-south divide. The job quality differences are related to the variety of social and institutional contexts. The countries of Southern Europe, with their social and institutional contexts falling within the scope of the Mediterranean model, generally present indicators below the European average contrasting Nordic countries having the best job quality indicators.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

J Biol Inorg Chem. 2008 Jun;13(5):737-53. doi: 10.1007/s00775-008-0359-6

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Proceedings IGLC-18, July 2010, Technion, Haifa, Israel

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The interest in chromium (Cr) arises from the widespread use of this heavy metal in various industrial processes that cause its release as liquid, solid and gaseous waste into the environment. The impact of Cr on the environment and living organisms primarily depends on its chemical form, since Cr(III) is an essential micronutrient for humans, other animals and plants, and Cr(VI) is highly toxic and a known human carcinogen. This study aimed to evaluate if the electrodialytic process (ED) is an appropriate treatment for Cr removal, through a critical overview of Cr speciation, before and after the ED experiments, to assess possible Cr(III)-Cr(VI) interconversions during the treatment. ED was the treatment technique applied to two types of matrices containing Cr: chromate copper arsenate (CCA) contaminated soil and municipal solid waste incineration (MSWI) fly ash. In order to study Cr remediation, three EDR set-ups were used: a new set-up, the combined cell (2/3C or 3/2C), with three compartments, alternating current between two anodes and different initial experimental conditions, one set-up with three compartments (3C cell) and the other set-up with two compartments (2C cell). The Cr removal rates obtained in this study were between 10-36% for the soil, and 1-13% for the fly ash. The highest Cr removal rates were achieved in the 26 days experiments: 36% for the soil, 13% for the fly ash. Regarding the 13 days experiments, the highest Cr removal rates were attained with the 2/3C set-up: 24% for the soil, 5% for the fly ash. The analysis of Cr(VI) was performed before and after ED experiments to evaluate eventual changes in Cr speciation during the treatment. This analysis was conducted by two methods: USEPA Method 3060A, for the extraction of Cr(VI); and Hach Company Method 8023, for the detection of Cr(VI). Despite the differences in Cr total concentration, both matrices presented a similar speciation, with Cr(III) being the main species found and Cr(VI) less than 3% of Cr total, before and after the treatment. For fly ash, Cr(VI) was initially below the detection limit of the method and remained that way after the treatment. For soil, Cr(VI) decreased after the treatment. Oxidation of Cr(III) to Cr(VI) did not occur during the ED process since there was no increase in Cr(VI) in the matrices after the treatment. Hence, the results of this study indicate that ED is an appropriate technique to remediate matrices containing Cr because it contributes to Cr removal, without causing Cr(III)-Cr(VI) interconversions.