40 resultados para BIO-BASED MATERIALS
Resumo:
The work presented in this thesis explores novel routes for the processing of bio-based polymers, developing a sustainable approach based on the use of alternative solvents such as supercritical carbon dioxide (scCO2), ionic liquids (ILs) and deep eutectic solvents (DES). The feasibility to produce polymeric foams via supercritical fluid (SCF) foaming, combined with these solvents was assessed, in order to replace conventional foaming techniques that use toxic and harmful solvents. A polymer processing methodology is presented, based on SCF foaming and using scCO2 as a foaming agent. The SCF foaming of different starch based polymeric blends was performed, namely starch/poly(lactic acid) (SPLA) and starch/poly(ε-caprolactone) (SPCL). The foaming process is based on the fact that CO2 molecules can dissolve in the polymer, changing their mechanical properties and after suitable depressurization, are able to create a foamed (porous) material. In these polymer blends, CO2 presents limited solubility and in order to enhance the foaming effect, two different imidazolium based ILs (IBILs) were combined with this process, by doping the blends with IL. The use of ILs proved useful and improved the foaming effect in these starch-based polymer blends. Infrared spectroscopy (FTIR-ATR) proved the existence of interactions between the polymer blend SPLA and ILs, which in turn diminish the forces that hold the polymeric structure. This is directly related with the ability of ILs to dissolve more CO2. This is also clear from the sorption experiments results, where the obtained apparent sorption coefficients in presence of IL are higher compared to the ones of the blend SPLA without IL. The doping of SPCL with ILs was also performed. The foaming of the blend was achieved and resulted in porous materials with conductivity values close to the ones of pure ILs. This can open doors to applications as self-supported conductive materials. A different type of solvents were also used in the previously presented processing method. If different applications of the bio-based polymers are envisaged, replacing ILs must be considered, especially due to the poor sustainability of some ILs and the fact that there is not a well-established toxicity profile. In this work natural DES – NADES – were the solvents of choice. They present some advantages relatively to ILs since they are easy to produce, cheaper, biodegradable and often biocompatible, mainly due to the fact that they are composed of primary metabolites such as sugars, carboxylic acids and amino-acids. NADES were prepared and their physicochemical properties were assessed, namely the thermal behavior, conductivity, density, viscosity and polarity. With this study, it became clear that these properties can vary with the composition of NADES, as well as with their initial water content. The use of NADES in the SCF foaming of SPCL, acting as foaming agent, was also performed and proved successful. The SPCL structure obtained after SCF foaming presented enhanced characteristics (such as porosity) when compared with the ones obtained using ILs as foaming enhancers. DES constituted by therapeutic compounds (THEDES) were also prepared. The combination of choline chloride-mandelic acid, and menthol-ibuprofen, resulted in THEDES with thermal behavior very distinct from the one of their components. The foaming of SPCL with THEDES was successful, and the impregnation of THEDES in SPCL matrices via SCF foaming was successful, and a controlled release system was obtained in the case of menthol-ibuprofen THEDES.
Resumo:
4th Conference COST ACTION FP1303 – Designing with Bio-based Materials – Challenges and opportiunities. INIA – CSIC, Madrid, 24-25 February 2016. Book of abstracts, T.Troya, J.Galván, D.Jones (Eds.), INIA and IETcc – CSIS, pg. 79-80 (ISBN: 978-91-88349-16-3)
Resumo:
Resumo: Nos últimos anos tem-se verificado um interesse crescente pela área das colas naturais, em particular na produção de placas de derivados de madeira para utilização no interior das construções. Estas colas parecem ser uma boa alternativa às colas sintéticas, derivadas do petróleo, pois, ao contribuírem para uma melhor qualidade do ar interior associada a uma menor incorporação de energia no produto final, apresentam vantagens interessantes em termos ambientais e de saúde. Nesse sentido fez-se uma revisão da bibliografia sobre a utilização laboratorial e mesmo semi-industrial de colas naturais em placas de derivados de madeira. São apresentados e discutidos alguns exemplos de materiais que estas colas aglutinam, bem como as suas características finais com vista a futuros desenvolvimentos experimentais de placas fabricadas a partir de resíduos agrícolas comuns. Abstract: An increased interest for bio-based adhesives for wood-based panels for building purposes has been arising. This type of adhesives could be a good alternative for petroleum based synthetic adhesives as bio-based adhesives can contribute for healthier indoor environments and, simultaneously, present lower embodied energy. For the previous reasons a bibliographic review was conducted, on the use of bio-based adhesives for the production of wood-based building panels. Some examples of the adhesives, the type of applications and the characterization of the resulting products are presented and compared, bearing in mind contributing for a future increase of research in this area.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Dissertação para obtenção do Grau de Doutor em Ciência e Engenharia de Materiais
Resumo:
Materials Science Forum Vols. 730-732 (2013) pp 433-438
Resumo:
Dissertação apresentada para obtenção do grau de Doutor em Biotecnologia pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia. A presente dissertação foi preparada no âmbito do protocolo de acordo bilateral de educação avançada (ERASMUS) entre a Universidade de Vigo e a Universidade Nova de Lisboa
Resumo:
Fundação para a Ciência e a Tecnologia (FCT-MCTES) under the grant SFRH/BD/69306/2010
Resumo:
In the field of energy, natural gas is an essential bridge to a clean, low carbon, renewable energy era. However, natural gas processing and transportation regulation require the removal of contaminant compounds such as carbon dioxide (CO2). Regarding clean air, the increasing atmospheric concentrations of greenhouse gases, specifically CO2, is of particular concern. Therefore, new costeffective, high performance technologies for carbon capture have been researched and the design of materials with the ability to efficiently separate CO2 from other gases is of vital importance.(...)
Resumo:
In this work, cellulose-based electro and ionic conductive composites were developed for application in cellulose based printed electronics. Electroconductive inks were successfully formulated for screen-printing using carbon fibers (CFs) and multi-walled carbon nanotubes (MWCNTs) as conductive functional material and cellulose derivatives working as binder. The formulated inks were used to fabricate conductive flexible and disposable electrodes on paper-based substrates. Interesting results were obtained after 10 printing passes and drying at RT of the ink with 10 % wt. of pristine CFs and 3% wt. of carboxymethyl cellulose (CMC), exhibiting a resistivity of 1.03 Ωcm and a resolution of 400 μm. Also, a resistivity of 0.57 Ωcm was obtained for only one printing pass using an ink based on 0.5 % wt. MWCNTs and 3 % wt. CMC. It was also demonstrated that ionic conductive cellulose matrix hydrogel can be used in electrolyte-gated transistors (EGTs). The electrolytes revealed a double layer capacitance of 12.10 μFcm-2 and ionic conductivity of 3.56x10-7 Scm-1. EGTs with a planar configuration, using sputtered GIZO as semiconducting layer, reached an ON/OFF ratio of 3.47x105, a VON of 0.2 V and a charge carrier mobility of 2.32 cm2V-1s-1.
Resumo:
Based on samples cross-sections from the Main Altarpiece of the Coimbra Old Cathedral, where a blue coating performed in 1685 is observed (that was partly covered with a Prussian blue-containing overpaint), the raw materials present in this coating were reproduced and studied. Blue areas were painted with smalt in oil, according to the contract signed by Manoel da Costa Pereira in 1684 and the analysis by Le Gac in 2009. Based on these, three batches of cobalt-based glasses (S1, S2 and S3) were heated and melted in alumina crucibles in the kiln. S1 contained 6.03 % of cobalt oxide, S2 contained 2.10 %, with the addition of 1.49 % of magnesium oxide, and S3 contained 6.82 % of cobalt oxide, with the addition of 4.63% of antimony trioxide. These batches were ground mechanically with water and manually with different vehicles stated in recipes. The results were studied by means of OM, SEM-EDS, X-Ray CT, Colorimetry and Vickers HT. Different binders were also produced and analyzed by means of μ-FTIR, in order to perform their characterization and obtain Standard Spectra. Since anhydrite was identified in the ground layers, gypsum from Óbidos was also characterized by XRD. The main goal of this thesis was to study all the raw materials present in the 1685-blue coating, in order to allow the historically accurate reconstruction of the layers build-up in the next future.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Engenharia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia do Ambiente, perfil de Engenharia Ecológica
Resumo:
Thesis submitted in Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa for the degree of Master in Materials Engineering