13 resultados para BINDERS
Resumo:
RESTAPIA 2012 - Int. Conf. on Rammed Earth Conservation, Valencia, 21-23 June 2012
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Conservação e Restauro, especialidade Teoria, História e Técnicas, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Dissertation presented to the Faculty of Sciences and Technology of New University of Lisbon in fulfilment of the requirements for the Master’s degree in Conservation and Restoration Specialization in easel painting
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Conservação e Restauro, especialidade de Ciências da Conservação, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
RESTAPIA 2012 - Int. Conf. on Rammed Earth Conservation, Valencia, 21-23 June 2012
Resumo:
Materials Science Forum Vols. 730-732 (2013) pp 617-622
Resumo:
Mesoamerican cultures had a strong tradition of written and pictorial manuscripts, called the codices. In studies already performed it was found the use of Maya Blue, made from a mixture of indigo and a clay called palygorskite, forming an incredibly stable material where the dye is trapped inside the nanotubes of the clay, after heating. However, a bigger challenge lies in the study of the yellows used, for these civilizations might have used this clay-dye mixture to produce their yellow colorants. As a first step, it was possible to provide identification, by non-invasive methods, of two colorants (a flavonoid and a carotenoid). While the flavonoid absorbed between 368-379 nm, the carotenoid would absorb around 455 nm. A temperature study also conducted allowed to set 140ºC as the desirable temperature to heat the samples without degrading them. FT-IR, conventional Raman and SERS allowed us to understand the existence of a reaction between the dyes and the clays (palygorskite and kaolinite), however it is difficult to understand it in a molecular point of view. As a second step, five species of Mexican dyes were selected on the basis of historical sources. The Maya yellow samples were produced adapting the recipe proposed by Reyes-Valerio, supporting the yellow dyes extracted from the dried plants on the clays, with addition of water, and then heated at 140ºC. It was found that the addition of water in palygorskite would increase the pH, hence deprotonating the molecules having a clear negative effect in the color. A second recipe was developed, without the addition of water; however, it was found that the use of water based binders would still alter the color of the samples with palygorskite. In this case, kaolinite without heating yield better results as a Maya yellow hybrid. It was found that the Maya chemistry might not have been the same for all the colors. The Mesoamericans might have found that different dyes could work better to their desires if matched with different clays. It was noticeable that for a clear distinction between flavonoids and carotenoids the reflectance and emission studies suffice, but when clay is added, Raman techniques will perform better. For this reason, conventional Raman and SERS were employed in order to create a database for the Mesoamerican dyestuffs for a future identification.
Resumo:
Sabe-se que aproximadamente 30% do material produzido pela indústria cerâmica é considerado desperdício e, frequentemente, depositado em aterro, com o impacto ambiental negativo que acarreta. Esta tem sido uma das grandes motivações para a crescente investigação que tem sido levada a cabo a fim de obter soluções viáveis para a sua reintrodução no processo produtivo. A viabilidade do uso de resíduos de material cerâmico tem vindo a ser avaliada, principalmente, na incorporação em betões ou em argamassas com base em cimento. Na antiguidade e na ausência de pozolanas naturais, eram frequentemente utilizados resíduos cerâmicos moídos, atuando como pozolanas artificiais e conferindo algumas características hidráulicas e de durabilidade às argamassas de cal aérea. Temse efetivamente constatado que alguns pós resultantes de desperdícios de cerâmica de barro vermelho, nomeadamente os que foram sujeitos a tratamento térmico a temperaturas inferiores a 900°C e moídos em granulometria fina, podem funcionar como pozolanas artificiais em argamassas. A introdução de resíduos de cerâmica em granulometria mais grossa nas argamassas, como agregado, pode também revelarse vantajoso, na medida em que permite substituir parcialmente a areia normalmente utilizada. Assim sendo, o recurso aos resíduos de cerâmica pode ser muito vantajoso em três vertentes principais: a redução de resíduos a depositar em aterro, a redução da extração de rochas para serem utilizadas na produção de ligantes e de areias e a produção de argamassas com comportamentos melhorados. Com o objetivo de analisar a viabilidade da introdução de resíduos de cerâmica em argamassas, que se pretendem sejam, essencialmente, adequadas como argamassas de substituição, tem vindo a ser desenvolvida investigação na Universidade de Coimbra em colaboração com a Universidade Nova de Lisboa. O trabalho que se apresenta neste artigo é uma pequena parte dessa investigação. Toda esta investigação tem tido o apoio de um projeto de investigação financiado pela FCT.
Resumo:
The use of wastes and industrial by-products as building materials is an important issue in order to decrease costs with waste management and the embodied energy of building products. Scrap tire rubber has been studied as aggregate for cementitious materials. Natural hydraulic limes are natural binders with particular characteristics of both air and hydraulic binders. Their specifications became stricter with the last version of EN 459-1:2010. In this study scrap tire rubber was used as additional aggregate of mortars, based on NHL3.5 and natural sand. Different particle size fractions and proportions of scrap tire rubber were used: a mix obtained almost directly from industry (only after sieving for preparation of particle sizes similar to mortar aggregate) and separated fine, medium and coarse fractions; 0%, 18%, 36% and 54% weight of binder, corresponding to 2.5%, 5% and 7.5% weight of sand. The influence of the rubbers´ additions on the mortars´ fresh state, mechanical and physical performance is presented, namely by flow table consistency, water retention, fresh bulk density, dynamic elasticity modulus, flexural and compressive strength, open porosity and bulk density, capillary absorption, drying and thermal conductivity. The use of the rubber mix coming from the waste tire industry seems advantageous and may open possibilities for use as raw material by the mortars industry.
Resumo:
All over the world, many earth buildings are deteriorating due to lack of maintenance and repair. Repairs on rammed earth walls are mainly done with mortars, by rendering application; however, often the repair is inadequate, resorting to the use of incompatible materials, including cement-based mortars. It has been observed that such interventions, in walls that until that day only had presented natural ageing issues, created new problems, much more dangerous for the building than the previous ones, causing serious deficiencies in this type of construction. One of the problems is that the detachment of the new cement-based mortar rendering only occurs after some time but, until that occurrence, degradations develop in the wall itself. When the render detaches, instead of needing only a new render, the surface has to be repaired in depth, with a repair mortar. Consequently, it has been stablished that the renders, and particularly repair mortars, should have physical, mechanical and chemical properties similar to those of the rammed earth walls. This article intends to contribute to a better knowledge of earth-based mortars used to repair the surface of rammed earth walls. The studied mortars are based on four types of earth: three of them were collected from non-deteriorated parts of walls of unstabilized rammed earth buildings located in Alentejo region, south of Portugal; the fourth is a commercial earth, consisting mainly of clay. Other components were also used, particularly: sand to control shrinkage; binders stabilizers such as dry hydrated air-lime, natural hydraulic lime, Portland cement and natural cement; as well as natural vegetal fibers (hemp fibers). The experimental analysis of the mortars in the fresh state consisted in determining the consistency by flow table and the bulk density. In the hardened state, the tests made it possible to evaluate the following properties: linear and volumetric shrinkage; capillary water absorption; drying capacity; dynamic modulus of elasticity; flexural and compressive strength.
Resumo:
Based on samples cross-sections from the Main Altarpiece of the Coimbra Old Cathedral, where a blue coating performed in 1685 is observed (that was partly covered with a Prussian blue-containing overpaint), the raw materials present in this coating were reproduced and studied. Blue areas were painted with smalt in oil, according to the contract signed by Manoel da Costa Pereira in 1684 and the analysis by Le Gac in 2009. Based on these, three batches of cobalt-based glasses (S1, S2 and S3) were heated and melted in alumina crucibles in the kiln. S1 contained 6.03 % of cobalt oxide, S2 contained 2.10 %, with the addition of 1.49 % of magnesium oxide, and S3 contained 6.82 % of cobalt oxide, with the addition of 4.63% of antimony trioxide. These batches were ground mechanically with water and manually with different vehicles stated in recipes. The results were studied by means of OM, SEM-EDS, X-Ray CT, Colorimetry and Vickers HT. Different binders were also produced and analyzed by means of μ-FTIR, in order to perform their characterization and obtain Standard Spectra. Since anhydrite was identified in the ground layers, gypsum from Óbidos was also characterized by XRD. The main goal of this thesis was to study all the raw materials present in the 1685-blue coating, in order to allow the historically accurate reconstruction of the layers build-up in the next future.
Resumo:
Contemporary painting places, and will continue to place, several questions about its meaning, its chemical nature, its durability and the best way to preserve it. This research aims at putting together comprehensive data on vinyl based paints, including their components, their properties, their aging behavior and their response to selected cleaning products. In this project degradation mechanisms of vinyl binders and formulations used in the 20th and 21st century were studied. Stability over time of selected vinyl polymers was assessed through natural indoor and artificially aging. The objective was to enhance knowledge and understanding of vinyl emulsion formulations and their performance over time. Overall conservation state of pictorial layers namely, adhesion, cohesion and discoloration of selected case studies from the Portuguese artist Julião Sarmento (b.1948) was correlated with the observed molecular level changes studied in laboratory experiments. Sarmento’s paintings were chosen due to conservation concerns (discoloration) on some of his works from the 90’s. Besides, research was carried out to start increasing the knowledge of what can be expected of PVAc based paints in terms of response to conservation treatments namely, surface cleaning. Artificial aging showed that the most recent formulations which are based on a poly(vinyl acetate), poly(vinyl chloride) and polyethylene terpolymer are less stable when compared to some homopolymer formulations. From the four pigments studied, titanium dioxide rutile and a carbon based black proved to be stabilizers for both types of polymer. The mixture lithopone plus calcium carbonate has showed to have a photocatalytic effect on the binders. The studied paintings showed to be in an overall good state of conservation except for the paintings created in the 90’s with white glue and a mixture of white lithoponeand calcium carbonate. Discoloration of this white paint seems to be irreversible and ongoing and is still a major concern. The disapearance of the plasticizer was the only change detected. The current works created by Sarmento are expected to be more stable as they were painted using the rutile titanium dioxide. Immersion/cleaning tests showed that vinyl based paints can be susceptible to water and organic solvents like ethanol as some evidences point to the removal/diffusion of additives from the paint. The observations made point to the need to further proceed in this research field.
Resumo:
Earthen building materials bear interesting environmental advantages and are the most appropriate to conserve historical earth constructions. To improve mechanical properties, these materials are often stabilized with cement or lime, but the impact of the stabilizers on the water transport properties, which are also critical, has been very rarely evaluated. We have tested four earth-based repair mortars applied on three distinct and representative rammed earth surfaces. Three mortars are based on earth collected from rammed earth buildings in south of Portugal and the fourth mortar is based on a commercial clayish earth. The main objective of the work was over the commercial earth mortar, applied stabilized and not stabilized on the three rammed earth surfaces to repair, to assess the influence of the stabilizers. The other three earth mortars (not stabilized) were applied on each type of rammed earth, representing the repair only made with local materials. The four unstabilized earth materials depicted nonlinear dependence on t1/2 during capillary suction. This behaviour was probably due to clay swelling. Stabilization with any of the four tested binders enabled the linear dependence of t1/2 expected from Washburn's equation, probably because the swelling did not take place in this case. However, the stabilizers also increased significantly the capillary suction and the capillary porosity of the materials. This means that, in addition to increasing the carbon footprint, stabilizers like cement and lime have functional disadvantages that discourage its use in repair mortars for raw earth construction.