1 resultado para Automatic speech recognition (ASR)
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Aberystwyth University Repository - Reino Unido (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (6)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (29)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (9)
- Boston University Digital Common (5)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- Cambridge University Engineering Department Publications Database (279)
- CentAUR: Central Archive University of Reading - UK (6)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (20)
- Cochin University of Science & Technology (CUSAT), India (13)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (4)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- Helda - Digital Repository of University of Helsinki (2)
- Indian Institute of Science - Bangalore - Índia (23)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (5)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Massachusetts Institute of Technology (10)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (20)
- Open University Netherlands (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (58)
- Queensland University of Technology - ePrints Archive (233)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (25)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (13)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (39)
- Universidade Federal do Pará (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universitat de Girona, Spain (2)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (2)
- Université de Montréal, Canada (7)
- University of Michigan (1)
- University of Queensland eSpace - Australia (14)
- University of Southampton, United Kingdom (1)
- University of Washington (6)
Resumo:
This paper develops the model of Bicego, Grosso, and Otranto (2008) and applies Hidden Markov Models to predict market direction. The paper draws an analogy between financial markets and speech recognition, seeking inspiration from the latter to solve common issues in quantitative investing. Whereas previous works focus mostly on very complex modifications of the original hidden markov model algorithm, the current paper provides an innovative methodology by drawing inspiration from thoroughly tested, yet simple, speech recognition methodologies. By grouping returns into sequences, Hidden Markov Models can then predict market direction the same way they are used to identify phonemes in speech recognition. The model proves highly successful in identifying market direction but fails to consistently identify whether a trend is in place. All in all, the current paper seeks to bridge the gap between speech recognition and quantitative finance and, even though the model is not fully successful, several refinements are suggested and the room for improvement is significant.