21 resultados para Audio Data set


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Superoxide reductase is a 14 kDa metalloprotein containing a catalytic nonhaem iron centre [Fe(His)4Cys]. It is involved in defence mechanisms against oxygen toxicity, scavenging superoxide radicals from the cell. The oxidized form of Treponema pallidum superoxide reductase was crystallized in the presence of polyethylene glycol and magnesium chloride. Two crystal forms were obtained depending on the oxidizing agents used after purification: crystals grown in the presence of K3Fe(CN)6 belonged to space group P21 (unit-cell parameters a = 60.3, b = 59.9, c = 64.8 A ° , = 106.9 ) and diffracted beyond 1.60 A ° resolution, while crystals grown in the presence of Na2IrCl6 belonged to space group C2 (a = 119.4, b = 60.1, c = 65.6 A ° , = 104.9 ) and diffracted beyond 1.55 A ° . A highly redundant X-ray diffraction data set from the C2 crystal form collected on a copper rotating-anode generator ( = 1.542 A ° ) clearly defined the positions of the four Fe atoms present in the asymmetric unit by SAD methods. A MAD experiment at the iron absorption edge confirmed the positions of the previously determined iron sites and provided better phases for model building and refinement. Molecular replacement using the P21 data set was successful using a preliminary trace as a search model. A similar arrangement of the four protein molecules could be observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This Thesis describes the application of automatic learning methods for a) the classification of organic and metabolic reactions, and b) the mapping of Potential Energy Surfaces(PES). The classification of reactions was approached with two distinct methodologies: a representation of chemical reactions based on NMR data, and a representation of chemical reactions from the reaction equation based on the physico-chemical and topological features of chemical bonds. NMR-based classification of photochemical and enzymatic reactions. Photochemical and metabolic reactions were classified by Kohonen Self-Organizing Maps (Kohonen SOMs) and Random Forests (RFs) taking as input the difference between the 1H NMR spectra of the products and the reactants. The development of such a representation can be applied in automatic analysis of changes in the 1H NMR spectrum of a mixture and their interpretation in terms of the chemical reactions taking place. Examples of possible applications are the monitoring of reaction processes, evaluation of the stability of chemicals, or even the interpretation of metabonomic data. A Kohonen SOM trained with a data set of metabolic reactions catalysed by transferases was able to correctly classify 75% of an independent test set in terms of the EC number subclass. Random Forests improved the correct predictions to 79%. With photochemical reactions classified into 7 groups, an independent test set was classified with 86-93% accuracy. The data set of photochemical reactions was also used to simulate mixtures with two reactions occurring simultaneously. Kohonen SOMs and Feed-Forward Neural Networks (FFNNs) were trained to classify the reactions occurring in a mixture based on the 1H NMR spectra of the products and reactants. Kohonen SOMs allowed the correct assignment of 53-63% of the mixtures (in a test set). Counter-Propagation Neural Networks (CPNNs) gave origin to similar results. The use of supervised learning techniques allowed an improvement in the results. They were improved to 77% of correct assignments when an ensemble of ten FFNNs were used and to 80% when Random Forests were used. This study was performed with NMR data simulated from the molecular structure by the SPINUS program. In the design of one test set, simulated data was combined with experimental data. The results support the proposal of linking databases of chemical reactions to experimental or simulated NMR data for automatic classification of reactions and mixtures of reactions. Genome-scale classification of enzymatic reactions from their reaction equation. The MOLMAP descriptor relies on a Kohonen SOM that defines types of bonds on the basis of their physico-chemical and topological properties. The MOLMAP descriptor of a molecule represents the types of bonds available in that molecule. The MOLMAP descriptor of a reaction is defined as the difference between the MOLMAPs of the products and the reactants, and numerically encodes the pattern of bonds that are broken, changed, and made during a chemical reaction. The automatic perception of chemical similarities between metabolic reactions is required for a variety of applications ranging from the computer validation of classification systems, genome-scale reconstruction (or comparison) of metabolic pathways, to the classification of enzymatic mechanisms. Catalytic functions of proteins are generally described by the EC numbers that are simultaneously employed as identifiers of reactions, enzymes, and enzyme genes, thus linking metabolic and genomic information. Different methods should be available to automatically compare metabolic reactions and for the automatic assignment of EC numbers to reactions still not officially classified. In this study, the genome-scale data set of enzymatic reactions available in the KEGG database was encoded by the MOLMAP descriptors, and was submitted to Kohonen SOMs to compare the resulting map with the official EC number classification, to explore the possibility of predicting EC numbers from the reaction equation, and to assess the internal consistency of the EC classification at the class level. A general agreement with the EC classification was observed, i.e. a relationship between the similarity of MOLMAPs and the similarity of EC numbers. At the same time, MOLMAPs were able to discriminate between EC sub-subclasses. EC numbers could be assigned at the class, subclass, and sub-subclass levels with accuracies up to 92%, 80%, and 70% for independent test sets. The correspondence between chemical similarity of metabolic reactions and their MOLMAP descriptors was applied to the identification of a number of reactions mapped into the same neuron but belonging to different EC classes, which demonstrated the ability of the MOLMAP/SOM approach to verify the internal consistency of classifications in databases of metabolic reactions. RFs were also used to assign the four levels of the EC hierarchy from the reaction equation. EC numbers were correctly assigned in 95%, 90%, 85% and 86% of the cases (for independent test sets) at the class, subclass, sub-subclass and full EC number level,respectively. Experiments for the classification of reactions from the main reactants and products were performed with RFs - EC numbers were assigned at the class, subclass and sub-subclass level with accuracies of 78%, 74% and 63%, respectively. In the course of the experiments with metabolic reactions we suggested that the MOLMAP / SOM concept could be extended to the representation of other levels of metabolic information such as metabolic pathways. Following the MOLMAP idea, the pattern of neurons activated by the reactions of a metabolic pathway is a representation of the reactions involved in that pathway - a descriptor of the metabolic pathway. This reasoning enabled the comparison of different pathways, the automatic classification of pathways, and a classification of organisms based on their biochemical machinery. The three levels of classification (from bonds to metabolic pathways) allowed to map and perceive chemical similarities between metabolic pathways even for pathways of different types of metabolism and pathways that do not share similarities in terms of EC numbers. Mapping of PES by neural networks (NNs). In a first series of experiments, ensembles of Feed-Forward NNs (EnsFFNNs) and Associative Neural Networks (ASNNs) were trained to reproduce PES represented by the Lennard-Jones (LJ) analytical potential function. The accuracy of the method was assessed by comparing the results of molecular dynamics simulations (thermal, structural, and dynamic properties) obtained from the NNs-PES and from the LJ function. The results indicated that for LJ-type potentials, NNs can be trained to generate accurate PES to be used in molecular simulations. EnsFFNNs and ASNNs gave better results than single FFNNs. A remarkable ability of the NNs models to interpolate between distant curves and accurately reproduce potentials to be used in molecular simulations is shown. The purpose of the first study was to systematically analyse the accuracy of different NNs. Our main motivation, however, is reflected in the next study: the mapping of multidimensional PES by NNs to simulate, by Molecular Dynamics or Monte Carlo, the adsorption and self-assembly of solvated organic molecules on noble-metal electrodes. Indeed, for such complex and heterogeneous systems the development of suitable analytical functions that fit quantum mechanical interaction energies is a non-trivial or even impossible task. The data consisted of energy values, from Density Functional Theory (DFT) calculations, at different distances, for several molecular orientations and three electrode adsorption sites. The results indicate that NNs require a data set large enough to cover well the diversity of possible interaction sites, distances, and orientations. NNs trained with such data sets can perform equally well or even better than analytical functions. Therefore, they can be used in molecular simulations, particularly for the ethanol/Au (111) interface which is the case studied in the present Thesis. Once properly trained, the networks are able to produce, as output, any required number of energy points for accurate interpolations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertation presented at the Faculty of Science and Technology of the New University of Lisbon in fulfillment of the requirements for the Masters degree in Electrical Engineering and Computers

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores – Sistemas Digitais e Percepcionais pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese apresentada como requisito parcial para obtenção do grau de Doutor em Gestão de Informação

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Minimum parking requirements are the norm for urban and suburban development in the United States (Davidson and Dolnick (2002)). The justification for parking space requirements is that overflow parking will occupy nearby street or off-street parking. Shoup (1999) and Willson (1995) provides cases where there is reason to believe that parking space requirements have forced parcel developers to place more parking than they would in the absence of parking requirements. If the effect of parking minimums is to significantly increase the land area devoted to parking, then the increase in impervious surfaces would likely cause water quality degradation, increased flooding, and decreased groundwater recharge. However, to our knowledge the existing literature does not test the effect of parking minimums on the amount of lot space devoted to parking beyond a few case studies. This paper tests the hypothesis that parking space requirements cause an oversupply of parking by examining the implicit marginal value of land allocated to parking spaces. This is an indirect test of the effects of parking requirements that is similar to Glaeser and Gyourko (2003). A simple theoretical model shows that the marginal value of additional parking to the sale price should be equal to the cost of land plus the cost of parking construction. We estimate the marginal values of parking and lot area with spatial methods using a large data set from the Los Angeles area non-residential property sales and find that for most of the property types the marginal value of parking is significantly below that of the parcel area. This evidence supports the contention that minimum parking requirements significantly increase the amount of parcel area devoted to parking.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Masters Thesis, presented as part of the requirements for the award of a Research Masters Degree in Economics from NOVA – School of Business and Economics

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article aims at testing empirically the relevance of the State/civil society dichotomy commonly used by political theorists through the question of the specific weight of MPs having a public sector background in Europe. It uses the DATACUBE data set in order to show that such an opposition is only relative because of the specific weight of the public sector in the parliamentary elite considered in a long-term perspective. The article focuses on the dynamics of this relevance and introduces nuances regarding variations across countries, sub-categories within the public sector and political parties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to global warming and shrinking fossil fuel resources, politics as well as society urge for a reduction of green house gas (GHG) emissions. This leads to a re-orientation towards a renewable energy sector. In this context, innovation and new technologies are key success factors. Moreover, the renewable energy sector has entered a consolidation stage, where corporate investors and mergers and acquisitions (M&A) gain in importance. Although both M&A and innovation in the renewable energy sector are important corporate strategies, the link between those two aspects has not been examined before. The present thesis examines the research question how M&A influence the acquirer’s post-merger innovative performance in the renewable energy sector. Based on a framework of relevant literature, three hypotheses are defined. First, the relation between non-technology oriented M&A and post-merger innovative performance is discussed. Second, the impact of absolute acquired knowledge on postmerger innovativeness is examined. Third, the target-acquirer relatedness is discussed. A panel data set of 117 firms collected over a period of six years has been analyzed via a random effects negative binomial regression model and a time lag of one year. The results support a non-significant, negative impact of non-technology M&A on postmerger innovative performance. The applied model did not support a positive and significant impact of absolute acquired knowledge on post-merger innovative performance. Lastly, the results suggest a reverse relation than postulated by Hypothesis 3. Targets from the same industry significantly and negatively influence the acquirers’ innovativeness.