7 resultados para Artificial satellites in remote sensing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crisis-affected communities and global organizations for international aid are becoming increasingly digital as consequence geotechnology popularity. Humanitarian sector changed in profound ways by adopting new technical approach to obtain information from area with difficult geographical or political access. Since 2011, turkey is hosting a growing number of Syrian refugees along southeastern region. Turkish policy of hosting them in camps and the difficulty created by governors to international aid group expeditions to get information, made such international organizations to investigate and adopt other approach in order to obtain information needed. They intensified its remote sensing approach. However, the majority of studies used very high-resolution satellite imagery (VHRSI). The study area is extensive and the temporal resolution of VHRSI is low, besides it is infeasible only using these sensors as unique approach for the whole area. The focus of this research, aims to investigate the potentialities of mid-resolution imagery (here only Landsat) to obtain information from region in crisis (here, southeastern Turkey) through a new web-based platform called Google Earth Engine (GEE). Hereby it is also intended to verify GEE currently reliability once the Application Programming Interface (API) is still in beta version. The finds here shows that the basic functions are trustworthy. Results pointed out that Landsat can recognize change in the spectral resolution clearly only for the first settlement. The ongoing modifications vary for each case. Overall, Landsat demonstrated high limitations, but need more investigations and may be used, with restriction, as a support of VHRSI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid growth of big cities has been noticed since 1950s when the majority of world population turned to live in urban areas rather than villages, seeking better job opportunities and higher quality of services and lifestyle circumstances. This demographic transition from rural to urban is expected to have a continuous increase. Governments, especially in less developed countries, are going to face more challenges in different sectors, raising the essence of understanding the spatial pattern of the growth for an effective urban planning. The study aimed to detect, analyse and model the urban growth in Greater Cairo Region (GCR) as one of the fast growing mega cities in the world using remote sensing data. Knowing the current and estimated urbanization situation in GCR will help decision makers in Egypt to adjust their plans and develop new ones. These plans should focus on resources reallocation to overcome the problems arising in the future and to achieve a sustainable development of urban areas, especially after the high percentage of illegal settlements which took place in the last decades. The study focused on a period of 30 years; from 1984 to 2014, and the major transitions to urban were modelled to predict the future scenarios in 2025. Three satellite images of different time stamps (1984, 2003 and 2014) were classified using Support Vector Machines (SVM) classifier, then the land cover changes were detected by applying a high level mapping technique. Later the results were analyzed for higher accurate estimations of the urban growth in the future in 2025 using Land Change Modeler (LCM) embedded in IDRISI software. Moreover, the spatial and temporal urban growth patterns were analyzed using statistical metrics developed in FRAGSTATS software. The study resulted in an overall classification accuracy of 96%, 97.3% and 96.3% for 1984, 2003 and 2014’s map, respectively. Between 1984 and 2003, 19 179 hectares of vegetation and 21 417 hectares of desert changed to urban, while from 2003 to 2014, the transitions to urban from both land cover classes were found to be 16 486 and 31 045 hectares, respectively. The model results indicated that 14% of the vegetation and 4% of the desert in 2014 will turn into urban in 2025, representing 16 512 and 24 687 hectares, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the recent advances in technology and miniaturization of devices such as GPS or IMU, Unmanned Aerial Vehicles became a feasible platform for a Remote Sensing applications. The use of UAVs compared to the conventional aerial platforms provides a set of advantages such as higher spatial resolution of the derived products. UAV - based imagery obtained by a user grade cameras introduces a set of problems which have to be solved, e. g. rotational or angular differences or unknown or insufficiently precise IO and EO camera parameters. In this work, UAV - based imagery of RGB and CIR type was processed using two different workflows based on PhotoScan and VisualSfM software solutions resulting in the DSM and orthophoto products. Feature detection and matching parameters influence on the result quality as well as a processing time was examined and the optimal parameter setup was presented. Products of the both workflows were compared in terms of a quality and a spatial accuracy. Both workflows were compared by presenting the processing times and quality of the results. Finally, the obtained products were used in order to demonstrate vegetation classification. Contribution of the IHS transformations was examined with respect to the classification accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese apresentada para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Geografia e Planeamento Territorial - Especialidade: Geografia Humana

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente relatório, inserido no Mestrado em Gestão do Território, Área de Especialização em Deteção Remota e Sistemas de Informação Geográfica, lecionado pelo Departamento de Geografia e Planeamento Regional da Faculdade de Ciências Sociais e Humanas da Universidade Nova de Lisboa, pretende descrever o trabalho desenvolvido pelo mestrando enquanto estagiário no Observatório do Tráfico de Seres Humanos (OTSH). O relatório está estruturado em três capítulos distintos. No primeiro capítulo é realizada uma abordagem teórica sobre o Tráfico de Seres Humanos e a distinção entre o mesmo com o Auxílio à Imigração Ilegal. Neste, é também feita uma pequena referência à problemática dos novos fluxos de refugiados/migrantes que, no momento da realização do mesmo, constituem uma questão bastante complexa sobretudo ao nível europeu. No segundo capítulo é realizada uma caracterização da área de estudo, assim como a descrição dos dados utilizados e a metodologia aplicada no mesmo. No terceiro capítulo são apresentados os resultados finais do estudo e a cartografia de síntese que sustenta os mesmos. Para a realização deste estudo recorreu-se a uma análise multicritério em SIG para prever a localização de áreas de maior suscetibilidade de ocorrência de novos casos relativos ao crime do tráfico de seres humanos para exploração laboral na agricultura, na região do Alentejo (distritos de Beja, Évora e Portalegre), através do recurso a dados estatísticos disponibilizados tanto pelo OTSH, como por outras entidades. A metodologia apresentada integra um SIG baseado num modelo raster com o Analytical Hierarchy Process (AHP). Através da realização deste estudo, a importância dos SIG como ferramenta no auxílio ao processo de tomada de decisão, pôde ser testada, conjuntamente com o processo metodológico AHP, através dos resultados apresentados. Com um possível desenvolvimento deste modelo analítico, pretende-se que o mesmo seja adaptável a outras regiões e em última instância, outros tipos de exploração e/ou tráfico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grasslands in semi-arid regions, like Mongolian steppes, are facing desertification and degradation processes, due to climate change. Mongolia’s main economic activity consists on an extensive livestock production and, therefore, it is a concerning matter for the decision makers. Remote sensing and Geographic Information Systems provide the tools for advanced ecosystem management and have been widely used for monitoring and management of pasture resources. This study investigates which is the higher thematic detail that is possible to achieve through remote sensing, to map the steppe vegetation, using medium resolution earth observation imagery in three districts (soums) of Mongolia: Dzag, Buutsagaan and Khureemaral. After considering different thematic levels of detail for classifying the steppe vegetation, the existent pasture types within the steppe were chosen to be mapped. In order to investigate which combination of data sets yields the best results and which classification algorithm is more suitable for incorporating these data sets, a comparison between different classification methods were tested for the study area. Sixteen classifications were performed using different combinations of estimators, Landsat-8 (spectral bands and Landsat-8 NDVI-derived) and geophysical data (elevation, mean annual precipitation and mean annual temperature) using two classification algorithms, maximum likelihood and decision tree. Results showed that the best performing model was the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), using the decision tree. For maximum likelihood, the model that incorporated Landsat-8 bands with mean annual precipitation (Model 5) and the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), achieved the higher accuracies for this algorithm. The decision tree models consistently outperformed the maximum likelihood ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last decade Mongolia’s region was characterized by a rapid increase of both severity and frequency of drought events, leading to pasture reduction. Drought monitoring and assessment plays an important role in the region’s early warning systems as a way to mitigate the negative impacts in social, economic and environmental sectors. Nowadays it is possible to access information related to the hydrologic cycle through remote sensing, which provides a continuous monitoring of variables over very large areas where the weather stations are sparse. The present thesis aimed to explore the possibility of using NDVI as a potential drought indicator by studying anomaly patterns and correlations with other two climate variables, LST and precipitation. The study covered the growing season (March to September) of a fifteen year period, between 2000 and 2014, for Bayankhongor province in southwest Mongolia. The datasets used were MODIS NDVI, LST and TRMM Precipitation, which processing and analysis was supported by QGIS software and Python programming language. Monthly anomaly correlations between NDVI-LST and NDVI-Precipitation were generated as well as temporal correlations for the growing season for known drought years (2001, 2002 and 2009). The results show that the three variables follow a seasonal pattern expected for a northern hemisphere region, with occurrence of the rainy season in the summer months. The values of both NDVI and precipitation are remarkably low while LST values are high, which is explained by the region’s climate and ecosystems. The NDVI average, generally, reached higher values with high precipitation values and low LST values. The year of 2001 was the driest year of the time-series, while 2003 was the wet year with healthier vegetation. Monthly correlations registered weak results with low significance, with exception of NDVI-LST and NDVI-Precipitation correlations for June, July and August of 2002. The temporal correlations for the growing season also revealed weak results. The overall relationship between the variables anomalies showed weak correlation results with low significance, which suggests that an accurate answer for predicting drought using the relation between NDVI, LST and Precipitation cannot be given. Additional research should take place in order to achieve more conclusive results. However the NDVI anomaly images show that NDVI is a suitable drought index for Bayankhongor province.