10 resultados para All-optical devices


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The work described in this thesis was performed at the Laboratory for Intense Lasers (L2I) of Instituto Superior Técnico, University of Lisbon (IST-UL). Its main contribution consists in the feasibility study of the broadband dispersive stages for an optical parametric chirped pulse amplifier based on the nonlinear crystal yttrium calcium oxi-borate (YCOB). In particular, the main goal of this work consisted in the characterization and implementation of the several optical devices involved in pulse expansion and compression of the amplified pulses to durations of the order of a few optical cycles (20 fs). This type of laser systems find application in fields such as medicine, telecommunications and machining, which require high energy, ultrashort (sub-100 fs) pulses. The main challenges consisted in the preliminary study of the performance of the broadband amplifier, which is essential for successfully handling pulses with bandwidths exceeding 100 nm when amplified from the μJ to 20 mJ per pulse. In general, the control, manipulation and characterization of optical phenomena on the scale of a few tens of fs and powers that can reach the PW level are extremely difficult and challenging due to the complexity of the phenomena of radiation-matter interaction and their nonlinearities, observed at this time scale and power level. For this purpose the main dispersive components were characterized in detail, specifically addressing the demonstration of pulse expansion and compression. The tested bandwidths are narrower than the final ones, in order to confirm the parameters of these elements and predict the performance for the broadband pulses. The work performed led to additional tasks such as a detailed characterization of laser oscillator seeding the laser chain and the detection and cancelling of additional sources of dispersion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis submitted in Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa for the degree of Master in Materials Engineering

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation to obtain the degree of master in Bioorganic

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation presented to obtain the PhD degree in Electrical and Computer Engineering - Electronics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Química Sustentável

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented in this thesis was developed in collaboration with a Portuguese company, BeyonDevices, devoted to pharmaceutical packaging, medical technology and device industry. Specifically, the composition impact and surface modification of two polymeric medical devices from the company were studied: inhalers and vaginal applicators. The polyethylene-based vaginal applicator was modified using supercritical fluid technology to acquire self-cleaning properties and prevent the transport of bacteria and yeasts to vaginal flora. For that, in-situ polymerization of 2-substituted oxazolines was performed within the polyethylene matrix using supercritical carbon dioxide. The cationic ring-opening polymerization process was followed by end-capping with N,N-dimethyldodecylamine. Furthermore, for the same propose, the polyethylene matrix was impregnated with lavender oil in supercritical medium. The obtained materials were characterized physical and morphologically and the antimicrobial activity against bacteria and yeasts was accessed. Materials modified using 2-substituted oxazolines showed an effective killing ability for all the tested microorganisms, while the materials modified with lavender oil did not show antimicrobial activity. Only materials modified with oligo(2-ethyl-2-oxazoline) maintain the activity during the long term stability. Furthermore, the cytotoxicity of the materials was tested, confirming their biocompatibilty. Regarding the inhaler, its surface was modified in order to improve powder flowability and consequently, to reduce powder retention in the inhaler´s nozzle. New dry powder inhalers (DPIs), with different needle’s diameters, were evaluated in terms of internal resistance and uniformity of the emitted dose. It was observed that they present a mean resistance of 0.06 cmH2O0.5/(L/min) and the maximum emitted dose obtained was 68.9% for the inhaler with higher needle´s diameter (2 mm). Thus, this inhaler was used as a test and modified by the coating with a commonly-used force control agent, magnesium stearate, dried with supercritical carbon dioxide (scCO2) and the uniformity of delivered dose tests were repeated. The modified inhaler showed an increase in emitted dose from 68.9% to 71.3% for lactose and from 30.0% to 33.7% for Foradil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital microfluidics (DMF) is a field which has emerged in the last decade as a re-liable and versatile tool for sensing applications based on liquid reactions. DMF allows the discrete displacement of droplets, over an array of electrodes, by the application of voltage, and also the dispensing from a reservoir, mixing, merging and splitting fluidic operations. The main drawback of these devices is due to the need of high driving volt-ages for droplet operations. In this work, alternative dielectric layers combinations were studied aiming the reduction of these driving voltages. DMF chips were designed, pro-duced and optimized according to the theory of electrowetting-on-dielectric, adopting different combinations of parylene-C and tantalum pentoxide (Ta2O5) as dielectric ma-terials, and Teflon as hydrophobic layer. With both devices’ configurations, i.e., Parylene as single dielectric, and multilayer chips combining Parylene and Ta2O5, it was possible to perform all the fluidic opera-tions in the microliter down to hundreds of nanoliters range. Multilayer chips presented significant reduction on driving voltages for droplet op-erations in silicone oil filler medium: from 70 V (parylene only) down to 30 V (parylene/Ta2O5) for dispensing; and from 50 V (parylene only) down to 15 V (parylene/Ta2O5) for movement. Peroxidase colorimetric reactions were successfully performed as proof-of-concept, using multilayer configuration devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing need to patrol and survey large maritime and terrestrial areas increased the need to integrate external sensors on aircraft in order to accomplish those patrols at increasingly higher altitudes, longer range and not depending upon vehicle type. The main focus of this work is to elaborate a practical, simple, effective and efficient methodology for the aircraft modification procedure resulting from the integration of an Elec-tro-Optical/Infra-Red (EO/IR) turret through a support structure. The importance of the devel-opment of a good methodology relies on the correct management of project variables as time, available resources and project complexity. The key is to deliver a proper tool for a project de-sign team that will be used to create a solution that fulfils all technical, non-technical and certi-fication requirements present in this field of transportation. The created methodology is inde-pendent of two main inputs: sensor model and aircraft model definition, and therefore it is in-tended to deliver the results for different projects besides the one that was presented in this work as a case study. This particular case study presents the development of a structure support for FLIR STAR SAPHIRE III turret integration on the front lower fuselage bulkhead (radome) of the LOCKHEED MARTIN C-130 H. Development of the case study focuses on the study of local structural analysis through the use of Finite Element Method (FEM). Development of this Dissertation resulted in a cooperation between Faculty of Science and Technology - Universidade Nova de Lisboa and the company OGMA - Indústria Aeronáutica de Portugal

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thrust towards energy conservation and reduced environmental footprint has fueled intensive research for alternative low cost sources of renewable energy. Organic photovoltaic cells (OPVs), with their low fabrication costs, easy processing and flexibility, represent a possible viable alternative. Perylene diimides (PDIs) are promising electron-acceptor candidates for bulk heterojunction (BHJ) OPVs, as they combine higher absorption and stability with tunable material properties, such as solubility and position of the lowest unoccupied molecular orbital (LUMO) level. A prerequisite for trap free electron transport is for the LUMO to be located at a level deeper than 3.7 eV since electron trapping in organic semiconductors is universal and dominated by a trap level located at 3.6 eV. Although the mostly used fullerene acceptors in polymer:fullerene solar cells feature trap-free electron transport, low optical absorption of fullerene derivatives limits maximum attainable efficiency. In this thesis, we try to get a better understanding of the electronic properties of PDIs, with a focus on charge carrier transport characteristics and the effect of different processing conditions such as annealing temperature and top contact (cathode) material. We report on a commercially available PDI and three PDI derivatives as acceptor materials, and its blends with MEH-PPV (Poly[2-methoxy 5-(2-ethylhexyloxy)-1,4-phenylenevinylene]) and P3HT (Poly(3-hexylthiophene-2,5-diyl)) donor materials in single carrier devices (electron-only and hole-only) and in solar cells. Space-charge limited current measurements and modelling of temperature dependent J-V characteristics confirmed that the electron transport is essentially trap-free in such materials. Different blend ratios of P3HT:PDI-1 (1:1) and (1:3) show increase in the device performance with increasing PDI-1 ratio. Furthermore, thermal annealing of the devices have a significant effect in the solar cells that decreases open-circuit voltage (Voc) and fill factor FF, but increases short-circuit current (Jsc) and overall device performance. Morphological studies show that over-aggregation in traditional donor:PDI blend systems is still a big problem, which hinders charge carrier transport and performance in solar cells.