1 resultado para Affinités lexicales


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The automatic acquisition of lexical associations from corpora is a crucial issue for Natural Language Processing. A lexical association is a recurrent combination of words that co-occur together more often than expected by chance in a given domain. In fact, lexical associations define linguistic phenomena such as idiomes, collocations or compound words. Due to the fact that the sense of a lexical association is not compositionnal, their identification is fundamental for the realization of analysis and synthesis that take into account all the subtilities of the language. In this report, we introduce a new statistically-based architecture that extracts from naturally occurring texts contiguous and non contiguous. For that purpose, three new concepts have been defined : the positional N-gram models, the Mutual Expectation and the GenLocalMaxs algorithm. Thus, the initial text is fisrtly transformed in a set of positionnal N-grams i.e ordered vectors of simple lexical units. Then, an association measure, the Mutual Expectation, evaluates the degree of cohesion of each positional N-grams based on the identification of local maximum values of Mutual Expectation. Great efforts have also been carried out to evaluate our metodology. For that purpose, we have proposed the normalisation of five well-known association measures and shown that both the Mutual Expectation and the GenLocalMaxs algorithm evidence significant improvements comparing to existent metodologies.