3 resultados para AC feeding
Resumo:
De modo a garantir as metas propostas pela União Europeia de diminuição de emissão de gases poluentes, alguns países membros apostaram na tecnologia eólica offshore. Com a evolução tecnológica, estes países pretendem aumentar as potências instaladas nos parques eólicos offshore, garantindo a sua otimização ao estarem em águas profundas, tendo assim um maior aproveitamento do potencial eólico. Com esta dissertação, realizou-se um estudo para analisar, sob o ponto de vista de modelos, as limitações dos sistemas de transmissão em HVAC (High Voltage Alternating Current) quando estabelecidos em cabos submarinos. Os mecanismos dos sistemas de alimentação em HVAC, na forma tradicional (linhas aérea), são confrontados com condicionalismos. Este tipo de infraestrutura submarina impõe restrições, pelo simples facto dos parâmetros de capacidade e indutância serem bastante significativos, que para uma situação de trânsito de energia, inviabilizam o transporte de energia, devido ao elevado consumo de potência reativa, bem como os seus custos extremamente elevados. Assim, os sistemas de alimentação em HVAC quando aplicados a parques eólicos offshore apresentam limitações. O recurso à tecnologia HVDC (High Voltage Direct Current), poderá ser a solução que se revela mais adequada para os sistemas de transmissão de energia associados aos parques eólicos offshore. Para além dos fatores técnicos é fundamental considerar os custos associados à construção e exploração do parque eólico, sendo fundamental analisar todos os dados relacionados com o projeto.
Resumo:
Polyhydroxyalkanoates (PHA) production using mixed microbial cultures (MMC) requires a multi-stage process involving the microbial selection of PHA-storing microorganisms, typically operated in sequencing batch reactors (SBR), and an accumulation reactor. Since low-cost renewable feedstocks used as process feedstock are often nitrogen-deficient, nutrient supply in the selection stage is required to allow for microbial growth. In this context, the possibility to uncouple nitrogen supply from carbon feeding within the SBR cycle has been investigated in this study. Moreover, three different COD:N ratios (100:3.79, 100:3.03 and 100:2.43) were tested in three different runs which also allowed the study of COD:N ratio on the SBR performance. For each run, a synthetic mixture of acetic and propionic acids at an overall organic load rate of 8.5 gCOD L-1 d-1 was used as carbon feedstock, whereas ammonium sulfate was the nitrogen source in a lab-scale sequence batch reactor (SBR) with 1 L of working volume. Besides, a sludge retention time (SRT) of 1 d was used as well as a 6 h cycle length. The uncoupled feeding strategy significantly enhanced the selective pressure towards PHA-storing microorganisms, resulting in a two-fold increase in the PHA production (up to about 1.3 gCOD L-1). A high storage response was observed for the two runs with the COD:N ratios (gCOD:gN) of 100:3.79 and 100:3.03, whereas the lowest investigated nitrogen load resulted in very poor performance in terms of polymer production. In fact, strong nitrogen limitation caused fungi to grow and a very poor storage ability by microorganisms that thrived in those conditions. The COD:N ratio also affected the polymer composition, indeed the produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) showed a variable HV content (1-20 %, w/w) among the three runs, lessening as the COD:N increased. This clearly suggests the possibility to use the COD:N ratio as a tool for tuning polymer properties regardless the composition of the feedstock.
Resumo:
The study of AC losses in superconducting pancake coils is of utmost importance for the development of superconducting devices. Due to different technical difficulties this study is usually performed considering one of two approaches: considering superconducting coils of few turns and studying AC losses in a large frequency range vs. superconducting coils with a large number of turns but measuring AC losses only in low frequencies. In this work, a study of AC losses in 128 turn superconducting coils is performed, considering frequencies ranging from 50 Hz till 1152 Hz and currents ranging from zero till the critical current of the coils. Moreover, the study of AC losses considering two different simultaneous harmonic components is also performed and results are compared to the behaviour presented by the coils when operating in a single frequency regime. Different electrical methods are used to verify the total amount of AC losses in the coil and a simple calorimetric method is presented, in order to measure AC losses in a multi-harmonic context. Different analytical and numerical methods are implemented and/or used, to design the superconducting coils and to compute the total amount of AC losses in the superconducting system and a comparison is performed to verify the advantages and drawbacks of each method.