15 resultados para basic solution in organic solvent
em RUN (Reposit
Resumo:
Integrally asymmetric skinned Lenzing P84 and Matrimid 5218 polymide membranes and Ultem 1000 polyetherimide membranes were prepared. Crosslinking of membranes using aliphatic diamines resulted in marked improvement in chemical stability. This however resulted in a decline in flux with only Lenzing P84 demonstrating good flux in DMF. Further variation of membrane dope parameters and operating conditions allowed for good control of the MWCO of membranes made from Lenzing P84. SEM pictures of Lenzing P84 membranes revealed a significant difference in membranes morphology. The presence of macrovoids increased when using more DMF in the dope solution. These studies demonstrate the possibility of developing OSN membranes using different polyimides and opens up future possibilities for controlling the MWCO of these membranes. Preliminary modelling demonstrates that good control of the MWCO could extend the application of OSN membranes to allow the fraction of molecules in the NF range.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Dissertation to obtain the academic degree of Master in materials engineering submitted to the Faculty of science and engineering of Universidade Nova de Lisboa
Resumo:
The enzyme hydrogenase isolated from the sulphate reducing anaerobic bacterium Desulfovibrio gigas was encapsulated in reverse micelles of AOT–water–isooctane. The enzyme ability to consume molecular hydrogen was studied as a function of the micelle size (given by Wo = [H2O]/[organic solvent]). A peak of catalytic activity was obtained for Wo = 18, a micelle size theoretically fitting the heterodimeric hydrogenase molecule. At this Wo value, the recorded catalytic activity was slightly higher than in a buffer system(Kcat = 169.43 s−1 against the buffer value of 151 s−1). The optimal buffer used to encapsulate the enzyme was found to be imidazole 50 mM, pH 9.0. The molecular hydrogen production activity was also tested in this reverse micelle medium.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Self-assembly is a phenomenon that occurs frequently throughout the universe. In this work, two self-assembling systems were studied: the formation of reverse micelles in isooctane and in supercritical CO2 (scCO2), and the formation of gels in organic solvents. The goal was the physicochemical study of these systems and the development of an NMR methodology to study them. In this work, AOT was used as a model molecule both to comprehensively study a widely researched system water/AOT/isooctane at different water concentrations and to assess its aggregation in supercritical carbon dioxide at different pressures. In order to do so an NMR methodology was devised, in which it was possible to accurately determine hydrodynamic radius of the micelle (in agreement with DLS measurements) using diffusion ordered spectroscopy (DOSY), the micellar stability and its dynamics. This was mostly assessed by 1H NMR relaxation studies, which allowed to determine correlation times and size of correlating water molecules, which are in agreement with the size of the shell that interacts with the micellar layer. The encapsulation of differently-sized carbohydrates was also studied and allowed to understand the dynamics and stability of the aggregates in such conditions. A W/CO2 microemulsion was prepared using AOT and water in scCO2, with ethanol as cosurfactant. The behaviour of the components of the system at different pressures was assessed and it is likely that above 130 bar reverse microemulsions were achieved. The homogeneity of the system was also determined by NMR. The formation of the gel network by two small molecular organogelators in toluene-d8 was studied by DOSY. A methodology using One-shot DOSY to perform the spectra was designed and applied with success. This yielded an understanding about the role of the solvent and gelator in the aggregation process, as an estimation of the time of gelation.
Resumo:
Master’s Thesis in Computer Engineering
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
The EM3E Master is an Education Programme supported by the European Commission, the European Membrane Society (EMS), the European Membrane House (EMH), and a large international network of industrial companies, research centers and universities
Resumo:
Deep-eutectic solvents (DES) are considered novel renewable and biodegradable solvents, with a cheap and easy synthesis, without waste production. Later it was discovered a new subclass of DES that even can be biocompatible, since their synthesis uses primary metabolites such as amino acids, organic acids and sugars, from organisms. This subclass was named natural deep-eutectic solvents (NADES). Due to their properties it was tried to study the interaction between these solvents and biopolymers, in order to produce functionalized fibers for biomedical applications. In this way, fibers were produced by using the electrospinning technique. However, it was first necessary to study some physical properties of NADES, as well as the influence of water in their properties. It has been concluded that the water has a high influence on NADES properties, which can be seen on the results obtained from the rheology and viscosity studies. The fluid dynamics had changed, as well as the viscosity. Afterwards, it was tested the viability of using a starch blend. First it was tested the dissolution of these biopolymers into NADES, in order to study the viability of their application in electrospinning. However the results obtained were not satisfactory, since the starch polymers studied did not presented any dissolution in any NADES, or even in organic solvents. In this way it was changed the approach, and it was used other biocompatible polymers. Poly(ethylene oxide), poly(vinyl alcohol) and gelatin were the others biopolymers tested for the electrospinning, with NADES. All polymers show good results, since it was possible to obtain fibers. However for gelatin it was used only eutectic mixtures, containing active pharmaceutical ingredients (API’s), instead of NADES. For this case it was used mandelic acid (antimicrobial properties), choline chloride, ibuprofen (anti-inflammatory properties) and menthol (analgesic properties). The polymers and the produced fibers were characterized by scanning electron microscope (SEM), Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). With the help of these techniques it was possible to conclude that it was possible to encapsulate NADES within the fibers. Rheology it was also study for poly(ethylene oxide) and poly(vinyl alcohol), in a way to understand the influence of polymer concentration, on the electrospinning technique. For the gelatin, among the characterization techniques, it was also performed cytotoxicity and drug release studies. The gelatin membranes did not show any toxicity for the cells, since their viability was maintained. Regarding the controlled release profile experiment no conclusion could be drawn from the experiments, due to the rapid and complete dissolution of the gelatin in the buffer solution. However it was possible to quantify the mixture of choline chloride with mandelic acid, allowing thus to complete, and confirm, the information already obtained for the others characterization technique.
Resumo:
The goal of this thesis is the investigation and optimization of the synthesis of potential fragrances. This work is projected as collaboration between the University of Applied Sciences in Merseburg and the company Miltitz Aromatics GmbH in Bitterfeld‐Wolfen (Germany). Flavoured compounds can be synthesized in different ways and by various methods. In this work, methods like the phase transfer catalysis and the Cope‐rearrangement were investigated and applied, for getting a high yield and quantity of the desired substances and without any by‐products or side reactions. This involved the study of syntheses with different process parameters such as temperature, solvent, pressure and reaction time. The main focus was on Cope‐rearrangement, which is a common method in the synthesis of new potential fragrance compounds. The substances synthesized in this work have a hepta‐1,5‐diene‐structure and that is why they can easily undergo this [3,3]‐sigma tropic rearrangement. The lead compound of all research was 2,5‐dimethyl‐2‐vinyl‐4‐hexenenitrile (Neronil). Neronil is synthesized by an alkylation of 2‐methyl‐3‐butenenitrile with prenylchloride under basic conditions in a phase‐transfer system. In this work the yield of isolated Neronil is improved from about 35% to 46% by according to the execution conditions of the reaction. Additionally the amount of side product was decreased. This synthesized hexenenitrile involved not only the aforementioned 1,5‐diene‐structure, but also a cyano group, that makes this structure a suitable base for the synthesis of new potential fragrance compounds. It was observed that Neronil can be transferred into 2,5‐dimethyl‐2‐vinyl‐4‐hexenoic acid by a hydrolysis under basic conditions. After five hours the acid can be obtained with a yield of 96%. The following esterification is realized with isobutanol to produce 2,5‐dimethyl‐2‐vinyl‐4‐hexenoic acid isobutyl ester with quantitative conversion. It was observed that the Neronil and the corresponding ester can be converted into the corresponding Cope‐product, with a conversion of 30 % and 80%. Implementing the Cope‐rearrangement, the acid was heated and an unexpected decarboxylated product is formed. To achieve the best verification of reaction development and structure, scrupulous analyses were done using GC‐MS, 1H‐NMR and 13C‐ NMR.
Resumo:
Aziridines, a class of organic compounds containing a three membered heterocycle with a nitrogen atom, are extremely valuable molecules in organic and medicinal chemistry. They are frequently used as versatile precursors in the synthesis of natural products, and many biologically active molecules possess the aziridine moiety. The reactivity of aziridines has been studied, for example, in ring-opening reactions with thiols. However, not much interest seems to be given to reactions of aziridines in aqueous media, despite the numberless advantages of using water as solvent in organic chemistry. The nucleophilic ring-opening reaction of aziridines in aqueous media was here explored. Following the Kaplan aziridine synthetic methodology, in which pyridinium salts undergo a photochemical transformation to give bicyclic vinyl aziridines, new aziridines were synthetized. Their nucleophilic ring-opening reaction in water under physiological conditions was investigated and a range of sulphur, nitrogen, carbon and oxygen nucleophiles tested. Thiols, anilines and azide proved to be good nucleophiles to react with the aziridines, giving the ring-opening product in moderate to good yields. The best results were obtained with thiols, more specifically with cysteine-derived nucleophiles. Preliminary results show that these bicyclic vinyl aziridines can modify calcitonin, a peptide containing two cysteine amino acids residues, grating them the potential to be used in bioconjugation as ligands to cysteine-containing proteins, or even as enzyme inhibitors of, for example, cysteine proteases. Additionally, exploratory investigations suggest that the separation of both enantiomers of the bicyclic vinyl aziridine can be performed by taking advantage of an enzymatic methodology for the resolution of racemic secondary alcohols. Both enantiomers would be highly valuable as precursors in the synthesis of enantiomerically pure molecules, as no other method is currently reported for their separation.
Resumo:
Ionic Liquids (ILs) consist in organic salts that are liquid at/or near room temperature. Since ILs are entirely composed of ions, the formation of ion pairs is expected to be one essential feature for describing solvation in ILs. In recent years, protein - ionic liquid (P-IL) interactions have been the subject of intensive studies mainly because of their capability to promote folding/unfolding of proteins. However, the ion pairs and their lifetimes in ILs in P-IL thematic is dismissed, since the action of ILs is therefore the result of a subtle equilibrium between anion-cation interaction, ion-solvent and ion-protein interaction. The work developed in this thesis innovates in this thematic, once the design of ILs for protein stabilisation was bio-inspired in the high concentration of organic charged metabolites found in cell milieu. Although this perception is overlooked, those combined concentrations have been estimated to be ~300 mM among the macromolecules at concentrations exceeding 300 g/L (macromolecular crowding) and transient ion-pair can naturally occur with a potential specific biological role. Hence the main objective of this work is to develop new bio-ILs with a detectable ion-pair and understand its effects on protein structure and stability, under crowding environment, using advanced NMR techniques and calorimetric techniques. The choline-glutamate ([Ch][Glu]) IL was synthesized and characterized. The ion-pair was detected in water solutions using mainly the selective NOE NMR technique. Through the same technique, it was possible to detect a similar ion-pair promotion under synthetic and natural crowding environments. Using NMR spectroscopy (protein diffusion, HSQC experiments, and hydrogen-deuterium exchange) and differential scanning calorimetry (DSC), the model protein GB1 (production and purification in isotopic enrichment media) it was studied in the presence of [Ch][Glu] under macromolecular crowding conditions (PEG, BSA, lysozyme). Under dilute condition, it is possible to assert that the [Ch][Glu] induces a preferential hydration by weak and non-specific interactions, which leads to a significant stabilisation. On the other hand, under crowding environment, the [Ch][Glu] ion pair is promoted, destabilising the protein by favourable weak hydrophobic interactions , which disrupt the hydration layer of the protein. However, this capability can mitigates the effect of protein crowders. Overall, this work explored the ion-pair existence and its consequences on proteins in conditions similar to cell milieu. In this way, the charged metabolites found in cell can be understood as key for protein stabilisation.