8 resultados para out-of-sample forecast
em RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal
Resumo:
A PhD Dissertation, presented as part of the requirements for the Degree of Doctor of Philosophy from the NOVA - School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
A PhD Dissertation, presented as part of the requirements for the Degree of Doctor of Philosophy from the NOVA - School of Business and Economics
Resumo:
This paper analyzes the in-, and out-of sample, predictability of the stock market returns from Eurozone’s banking sectors, arising from bank-specific ratios and macroeconomic variables, using panel estimation techniques. In order to do that, I set an unbalanced panel of 116 banks returns, from April, 1991, to March, 2013, to constitute equal-weighted country-sorted portfolios representative of the Austrian, Belgian, Finish, French, German, Greek, Irish, Italian, Portuguese and Spanish banking sectors. I find that both earnings per share (EPS) and the ratio of total loans to total assets have in-sample predictive power over the portfolios’ monthly returns whereas, regarding the cross-section of annual returns, only EPS retain significant explanatory power. Nevertheless, the sign associated with the impact of EPS is contrarian to the results of past literature. When looking at inter-yearly horizon returns, I document in-sample predictive power arising from the ratios of provisions to net interest income, and non-interest income to net income. Regarding the out-of-sample performance of the proposed models, I find that these would only beat the portfolios’ historical mean on the month following the disclosure of year-end financial statements. Still, the evidence found is not statistically significant. Finally, in a last attempt to find significant evidence of predictability of monthly and annual returns, I use Fama and French 3-Factor and Carhart models to describe the cross-section of returns. Although in-sample the factors can significantly track Eurozone’s banking sectors’ stock market returns, they do not beat the portfolios’ historical mean when forecasting returns.
Resumo:
The aim of this work project is to find a model that is able to accurately forecast the daily Value-at-Risk for PSI-20 Index, independently of the market conditions, in order to expand empirical literature for the Portuguese stock market. Hence, two subsamples, representing more and less volatile periods, were modeled through unconditional and conditional volatility models (because it is what drives returns). All models were evaluated through Kupiec’s and Christoffersen’s tests, by comparing forecasts with actual results. Using an out-of-sample of 204 observations, it was found that a GARCH(1,1) is an accurate model for our purposes.
Resumo:
In this thesis, a feed-forward, back-propagating Artificial Neural Network using the gradient descent algorithm is developed to forecast the directional movement of daily returns for WTI, gold and copper futures. Out-of-sample back-test results vary, with some predictive abilities for copper futures but none for either WTI or gold. The best statistically significant hit rate achieved was 57% for copper with an absolute return Sharpe Ratio of 1.25 and a benchmarked Information Ratio of 2.11.
Resumo:
This thesis does not set out to focus on the dynamics relationship between Twitter and stock prices, but instead tries to understand if using relevant information extracted from tweets has the power to increase investors’ stock picking ability, and generate alpha in portfolio’s choice relative to a benchmark. Despite the short period analyzed, it gives promising results that the sentiment analysis performed by Social Market Analytics Inc. applied to an equity portfolio, is able to generate positive abnormal returns, statistically significant in and out of sample.
Resumo:
We investigate the cointegration between VIX and CDS indices, and the possibility of exploiting it in an existing credit market timing investment model. We find cointegration over most of the sample period and the leadership of VIX over the CDS in the price discovery process. We present two methods for including cointegration into the model. Both strategies improve the in-sample and out-of-sample model performances, even though out-of-sample results are weaker. We find that in-sample better performances are explained by a stronger cointegration, concluding that in the presence of cointegration our strategies can be profitable in an investment model that considers transaction costs.