1 resultado para gold mine
em RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal
Filtro por publicador
- JISC Information Environment Repository (1)
- Aberystwyth University Repository - Reino Unido (1)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (4)
- Archive of European Integration (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (8)
- Aston University Research Archive (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (32)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Biodiversity Heritage Library, United States (1)
- Brock University, Canada (3)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (24)
- Carolina Law Scholarship Repository (1)
- CentAUR: Central Archive University of Reading - UK (66)
- Center for Jewish History Digital Collections (4)
- Chapman University Digital Commons - CA - USA (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (307)
- Cochin University of Science & Technology (CUSAT), India (5)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (4)
- Digital Archives@Colby (1)
- Digital Commons - Montana Tech (8)
- Digital Commons @ Winthrop University (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Duke University (8)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Helda - Digital Repository of University of Helsinki (2)
- Indian Institute of Science - Bangalore - Índia (81)
- Infoteca EMBRAPA (1)
- Instituto Politécnico do Porto, Portugal (4)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (7)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (138)
- Queensland University of Technology - ePrints Archive (169)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (3)
- Royal College of Art Research Repository - Uninet Kingdom (3)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (1)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (2)
- Universidade Federal do Pará (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (5)
- University of Michigan (3)
- University of Queensland eSpace - Australia (18)
- University of Washington (1)
- WestminsterResearch - UK (4)
Relevância:
Resumo:
In this thesis, a feed-forward, back-propagating Artificial Neural Network using the gradient descent algorithm is developed to forecast the directional movement of daily returns for WTI, gold and copper futures. Out-of-sample back-test results vary, with some predictive abilities for copper futures but none for either WTI or gold. The best statistically significant hit rate achieved was 57% for copper with an absolute return Sharpe Ratio of 1.25 and a benchmarked Information Ratio of 2.11.