6 resultados para Spore germination

em RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

RESUMO: Clostridium difficile é presentemente a principal causa de doença gastrointestinal associada à utilização de antibióticos em adultos. C. difficile é uma bactéria Gram-positiva, obrigatoriamente anaeróbica, capaz de formar endósporos. Tem-se verificado um aumento dos casos de doença associada a C. difficile com sintomas mais severos, elevadas taxas de morbilidade, mortalidade e recorrência, em parte, devido à emergência de estirpes mais virulentas, mas também devido à má gestão do uso de antibióticos. C. difficile produz duas toxinas, TcdA e TcdB, que são os principais fatores de virulência e responsáveis pelos sintomas da doença. Estas são codificadas a partir do Locus de Patogenicidade (PaLoc) que codifica ainda para um regulador positivo, TcdR, uma holina, TcdE, e um regulador negativo, TcdC. Os esporos resistentes ao oxigénio são essenciais para a transmissão do organismo e recorrência da doença. A expressão dos genes do PaLoc ocorre em células vegetativas, no final da fase de crescimento exponencial, e em células em esporulação. Neste trabalho construímos dois mutantes de eliminação em fase dos genes tcdR e tcdE. Mostrámos que a auto-regulação do gene tcdR não é significativa. No entanto, tcdR é sempre necessário para a expressão dos genes presentes no PaLoc. Trabalho anterior mostrou que, com a exceção de tcdC, os demais genes do PaLoc são expressos no pré-esporo. Mostrámos aqui que TcdA é detectada à superfície do esporo maduro e que a eliminação do tcdE não influencia a acumulação de TcdA no meio de cultura ou em associação às células ou ao esporo. Estas observações têm consequências para o nosso entendimento do processo infecioso: sugeremque o esporo possa ser também um veículo para a entrega da toxina nos estágios iniciais da infecção, que TcdA possa ser libertada durante a germinação do esporo, e que o esporo possa utilizar o mesmo receptor reconhecido por TcdA para a ligação à mucosa do cólon.---------------------------ABSTRACT: Clostridium difficile is currently the major cause of antibiotic-associated gastrointestinal diseases in adults. This is a Gram-positive bacterium, endospore-forming and an obligate anaerobe that colonizes the gastrointestinal tract. Recent years have seen a rise in C. difficile associated disease (CDAD) cases, associated with more severe disease symptoms, higher rates of morbidity, mortality and recurrence, which were mostly caused due to the emergence of “hypervirulent” strains but also due to changing patterns of antibiotics use. C. difficile produces two potent toxins, TcdA and TcdB, which are the main virulence factors and the responsible for the disease symptoms. These are codified from a Pathogenicity Locus (PaLoc), composed also by the positive regulator, TcdR, the holin-like protein, TcdE, and a negative regulator, TcdC. Besides the toxins, the oxygen-resistant spores are also essential for transmission of the organism through diarrhea; moreover, spores can accumulate in the environment or in the host, which will cause disease recurrence. The expression of the PaLoc genes occurs in vegetative cells, at the end of the exponential growth phase, and in sporulating cells. In this work, we constructed two in-frame deletion mutants of tcdR and tcdE. We showed that the positive auto regulation of tcdR is not significant. However, tcdR is always necessary for the expression of the PaLoc genes. A previous work showed that, except tcdC, all the PaLoc genes are expressed in the forespore. Here, we detected TcdA at the spore surface. Furthermore, we showed that the in-frame deletion of tcdE does not affect the accumulation of TcdA in the culture medium or in association with cells or spores. This data was important for us to conclude about the infeccious process: it suggests that the spore may be the vehicle for the delivery of TcdA in early stages of infection, that TcdA may be released during spores germination and that this spore may use the same receptor recognized by TcdA to bind to the colonic mucosa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biology, Microbial Biology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clostridium difficile is a gram positive, spore former, anaerobic bacterium that is able to cause infection and disease, with symptoms ranging from mild diarrhea to pseudomembranous colitis, toxic megacolon, sepsis and death. In the last decade new strains have emerged that caused outbreaks of increased disease severity and higher recurrence, morbidity and mortality rates, and C. difficile is now considered both a main nosocomial pathogen associated with antibiotic therapy as well as a major concern in the community.(...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sporulation in Bacillus subtilis culminates with the formation of a dormant endospore. The endospore (or spore) is one of the most resilient cell types known and can remain viable in the environment for extended periods of time. Contributing to the spore’s resistance and its ability to interact with and monitor its immediate environment is the coat, the outermost layer of B. subtilis spores. The coat is composed by over 70 different proteins, which are produced at different stages in sporulation and orderly assembled around the developing spore.(...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endospores, or spores for simplicity, are a highly resistant cell type produced by some bacterial species under adverse conditions. Two main protective layers contribute to the resilience of spores: the cortex, composed of peptidoglycan, and the outermost proteinaceous coat. In Bacillus subtilis, the coat comprises up to 80 different proteins, organized into four sublayers: the basement layer, the inner coat, the outer coat and the crust. These proteins are synthesized at different times during sporulation and deposited at the spore surface in multiple coordinated waves. Central to coat formation is a group of morphogenetic proteins that guide the assembly of the coat components. Targeting of the coat proteins to the surface of the developing spore is mainly controlled by the SpoIVA morphogenetic ATPase. In a second stage, the coat proteins fully encircle the spore, a process termed encasement that requires the morphogenetic protein SpoVID. Assembly of the inner coat requires SafA, whereas formation of the outer coat and the crust requires CotE. SafA interacts directly with the N terminus of SpoVID. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: The main aims of this work were the study of cork slabs moulds colonization and the evaluation of the moulds diversity during cork processing steps, in different cork stoppers factories. Simultaneously, it was envisaged to perform an evaluation of the air quality. Methods and Results: Moulds were isolated and identified from cork slabs and cork samples in four cork stoppers factories. The identification was based on morphological characters and microscopic observation of the reproductive structures. Airborne spore dispersion was assessed using a two stage Andersen sampler. It was observed that Chrysonilia sitophila was always present on cork slabs during the maturing period, but mould diversity appeared to be associated to the different factory configurations and processing steps. Conclusions: Spatial separation of the different steps of the process, including physical separation of the maturation step, is essential to guarantee high air quality and appropriate cork slabs colonization, i.e. C. sitophila dominance. The sorting and cutting of the edges of cork slabs after boiling and before the maturing step is also recommended. Significance and Impact of the Study: This study is very important for the cork stopper industry as it gives clear indications on how to keep high quality manufacturing standards and how to avoid occupational health problems.