3 resultados para Payment instruments

em RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este estudo visa perceber quais os principais determinantes da adopção e recomendação da tecnologia de pagamentos móveis. Para atingir este objectivo, foi desenvolvido um modelo de pesquisa que combinou os modelos de adopção unified theory of acceptance and use of technology 2 (UTAUT2) e diffusions on innovations (DOI), juntamente com a variável perceived technology security (PTS). Foi realizado um questionário online, tendo sido obtidas 301 respostas válidas. Os dados recolhidos foram analisados utilizando a técnica de structured equation modeling (SEM), de forma a testar empiricamente o modelo e pesquisa. As principais conclusões retiradas são que os principais factores, com efeitos directos e indirectos, para a adopção e recomendação da tecnologia de pagamentos móveis são compatibility, perceived technology security, performance expectations, innovativeness e social influence. As conclusões deste estudo fornecem informações úteis às partes interessadas na tecnologia de pagamentos móveis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Master's Double Degree in Finance from the NOVA School of Business and Economics / Masters Degree in Economics from Insper

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This present study aimed to investigate the fatigue life of unused (new) endodontic instruments made of NiTi with control memory by Coltene™ and subjected to the multi curvature of a mandibular first molar root canal. Additionally, the instrument‟s structural behaviour was analysed through non-linear finite element analysis (FEA). The fatigue life of twelve Hyflex™ CM files was assessed while were forced to adopt a stance with multiple radius of curvature, similar to the ones usually found in a mandibular first molar root canal; nine of them were subjected to Pecking motion, a relative movement of axial type. To achieve this, it was designed an experimental setup with the aim of timing the instruments until fracture while worked inside a stainless steel mandibular first molar model with relative axial motion to simulate the pecking motion. Additionally, the model‟s root canal multi-curvature was confirmed by radiography. The non-linear finite element analysis was conducted using the computer aided design software package SolidWorks™ Simulation, in order to define the imposed displacement required by the FEA, it was necessary to model an endodontic instrument with simplified geometry using SolidWorks™ and subsequently analyse the geometry of the root canal CAD model. The experimental results shown that the instruments subjected to pecking motion displayed higher fatigue life values and higher lengths of fractured tips than those with only rotational relative movement. The finite element non-linear analyses shown, for identical conditions, maximum values for the first principal stress lower than the yield strength of the material and those were located in similar positions to the instrument‟s fracture location determined by the experimental testing results.