4 resultados para PLURIPOTENT STEM-CELLS

em RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

RESUMO: Actualmente, a única possibilidade de cura para doentes com adenocarcinoma do pâncreas (PDAC) é a ressecção cirúrgica, no início deste estudo, perguntamo-nos se os predictores clínico-patológicos clássicos de prognostico poderiam ser validados em uma grande cohort de doentes com cancro do pâncreas ressecável e se outros predictores clínicos poderiam ter um papel na decisão de que doentes beneficiariam de ressecção cirúrgica. No capítulo 2, observamos que até 30% dos doentes morrem no primeiro ano após a ressecção cirúrgica, pelo que o nosso objectivo foi determinar factores pré-operatórios que se correlacionam com mortalidade precoce após ressecação cirúrgica com recurso a um instrumento estatisticamente validado, o Charlson-Age Comorbidity Index (CACI), determinamos que um CACI score superior a 4 foi preditivo de internamentos prolongados (p <0,001), complicações pós-operatórias (p = 0,042), e mortalidade em 1 ano pós- ressecção cirúrgica (p <0,001). Um CACI superior a 6 triplicou a mortalidade no primeiro ano pós-cirurgia e estes doentes têm menos de 50% de probabilidade de estarem vivos um ano após a cirurgia. No capítulo 3, o nosso objectivo foi identificar uma proteína de superfície que se correlacionasse estatisticamente com o prognostico de doentes com adenocarcinoma do pâncreas e permitisse a distinção de subgrupos de doentes de acordo com as suas diferenças moleculares, perguntamo-nos ainda se essa proteína poderia ser um marcador de células-estaminais. No nosso trabalho anterior observamos que as células tumorais na circulação sanguínea apresentavam genes com características bifenotípica epitelial e mesenquimal, enriquecimento para genes de células estaminais (ALDH1A1 / ALDH1A2 e KLF4), e uma super-expressão de genes da matriz extracelular (colagénios, SPARC, e DCN) normalmente identificados no estroma de PDAC. Após a avaliação dos tumores primários com RNA-ISH, muitos dos genes identificados, foram encontrados co-localizando em uma sub-população de células na região basal dos ductos pancreáticos malignos. Além disso, observamos que estas células expressam o marcador SV2A neuroendócrino, e o marcador de células estaminais ALDH1A1/2. Em comparação com tumores negativos para SV2, os doentes com tumores SV2 positivos apresentaram níveis mais baixos de CA 19-9 (69% vs. 52%, p = 0,012), tumores maiores (> 4 cm, 23% vs. 10%, p = 0,0430), menor invasão de gânglios linfáticos (69% vs. 86%, p = 0,005) e tumores mais diferenciados (69% vs. 57%, p = 0,047). A presença de SV2A foi associada com uma sobrevida livre de doença mais longa (HR: 0,49 p = 0,009) bem como melhor sobrevida global (HR: 0,54 p = 0,018). Em conjunto, esta informação aponta para dois subtipos diferentes de adenocarcinoma do pâncreas, e estes subtipos co-relacionam estatisticamente com o prognostico de doentes, sendo este subgrupo definido pela presença do clone celular SV2A / ALDH1A1/2 positivo com características neuroendócrinas. No Capítulo 4, a expressão de SV2A no cancro do pâncreas foi validado em linhas celulares primárias. Demonstramos a heterogeneidade do adenocarcinoma do pâncreas de acordo com características clonais neuroendócrinas. Ao comparar as linhas celulares expressando SV2 com linhas celulares negativas, verificamos que as linhas celulares SV2+ eram mais diferenciadas, diferindo de linhas celulares SV2 negativas no que respeita a mutação KRAS, proliferação e a resposta à quimioterapia. No capítulo 5, perguntamo-nos se o clone celular SV2 positivo poderia explicar a resistência a quimioterapia observada em doentes. Observamos um aumento absoluto de clones celulares expressando SV2A, em múltiplas linhas de evidência - doentes, linhas de células primárias e xenotransplantes. Embora, tenhamos sido capazes de demonstrar que o adenocarcinoma do pâncreas é uma doença heterogénea, consideramos que a caracterização genética destes clones celulares expressando SV2A é de elevada importância. Pretendemos colmatar esta limitação com as seguintes estratégias: Após o tratamento com quimioterapia neoadjuvante na nossa coorte, realizamos microdissecação a laser das amostras primarias em parafina, de forma a analisar mutações genéticas observadas no adenocarcinoma pancreático; em segundo lugar, pretendemos determinar consequências de knockdown da expressão de SV2A em nossas linhas celulares seguindo-se o tratamento com gemicitabina para determinação do papel funcional de SV2A; finalmente, uma vez que os nossos esforços anteriores com um promotor - repórter e SmartFlare ™ falharam, o próximo passo será realizar RNA-ISH PrimeFlow™ seguido de FACS e RNA-seq para caracterização deste clone celular. Em conjunto, conseguimos provar com várias linhas de evidência, que o adenocarcinoma pancreático é uma doença heterogénea, definido por um clone de células que expressam SV2A, com características neuroendócrinas. A presença deste clone no tecido de doentes correlaciona-se estatisticamente com o prognostico da doença, incluindo sobrevida livre de doença e sobrevida global. Juntamente com padrões de proliferação e co-expressão de ALDH1A1/2, este clone parece apresentar um comportamento de células estaminais e está associado a resistência a quimioterapia, uma vez que a sua expressão aumenta após agressão química, quer em doentes, quer em linhas de células primárias.----------------------------- ABSTRACT: Currently, the only chance of cure for patients with pancreatic adenocarcinoma is surgical resection, at the beginning of my thesis studies, we asked if the classical clinicopathologic predictors of outcome could be validated in a large cohort of patients with early stage pancreatic cancer and if other clinical predictors could have a role on deciding which patients would benefit from surgery. In chapter 2, we found that up to 30% of patients die within the first year after curative intent surgery for pancreatic adenocarcinoma. We aimed at determining pre-operative factors that would correlate with early mortality following resection for pancreatic cancer using a statistically validated tool, the Charlson-Age Comorbidity Index (CACI). We found that a CACI score greater than 4 was predictive of increased length of stay (p<0.001), post-operative complications (p=0.042), and mortality within 1-year of pancreatic resection (p<0.001). A CACI score of 6 or greater increased 3-fold the odds of death within the first year. Patients with a high CACI score have less than 50% likelihood of being alive 1 year after surgery. In chapter 3 we aimed at identifying a surface protein that correlates with patient’s outcome and distinguishes sub-groups of patients according to their molecular differences and if this protein could be a cancer stem cell marker. The most abundant class of circulating tumor cells identified in our previous work was found to have biphenotypic features of epithelial to mesenchymal transition, enrichment for stem-cell associated genes (ALDH1A1/ALDH1A2 and KLF4), and an overexpression of extracellular matrix genes (Collagens, SPARC, and DCN) normally found in the stromal microenvironment of PDAC primary tumors. Upon evaluation of matched primary tumors with RNA-ISH, many of the genes identified were found to co-localize in a sub-population of cells at the basal region of malignant pancreatic ducts. In addition, these cells expressed the neuroendocrine marker SV2A, and the stem cell marker ALDH1A1/2. Compared to SV2 negative tumors, patients with SV2 positive tumors were more likely to present with lower CA 19-9 (69% vs. 52%, p = 0.012), bigger tumors (size > 4 cm, 23% vs. 10%, p= 0.0430), less nodal involvement (69% vs. 86%, p = 0.005) and lower histologic grade (69% vs. 57%, p = 0.047). The presence of SV2A expressing cells was associated with an improved disease free survival (HR: 0.49 p=0.009) and overall survival (HR: 0.54 p=0.018) and correlated linearly with ALDH1A2. Together, this information points to two different sub-types of pancreatic adenocarcinoma, and these sub-types correlated with patients’ outcome and were defined by the presence of a SV2A/ ALDH1A1/2 expressing clone with neuroendocrine features. In Chapter 4, SV2A expression in cancer was validated in primary cell lines. We were able to demonstrate pancreatic adenocarcinoma heterogeneity according to neuroendocrine clonal features. When comparing SV2 expressing cell lines with SV2 negative cell lines, we found that SV2+ cell lines were more differentiated and differ from SV2 negative cell lines regarding KRAS mutation, proliferation and response to chemotherapy. In Chapter 5 we aimed at determining if this SV2 positive clone could explain chemoresistance observed in patients. We found an absolute increase in SV2A expressing cells, with multiple lines of evidence, in patients, primary cell lines and xenografts. Although, we have been able to show evidence that pancreatic adenocarcinoma is a heterogeneous disease, our findings warrant further investigation. To further characterize SV2A expressing clones after treatment with neoadjuvant chemotherapy in our cohort, we have performed laser capture microdissection of the paraffin embedded tissue in this study and will analyze the tissue for known genetic mutations in pancreatic adenocarcinoma; secondly, we want to know what will happen after knocking down SV2A expression in our cell lines followed by treatment with gemcitabine to determine if SV2A is functionally important; finally, since our previous efforts with a promoter – reporter and SmartFlare™ have failed, we will utilize a novel PrimeFlow™ RNA-ISH assay followed by FACS and RNA sequencing to further characterize this cellular clone. Overall our data proves, with multiple lines of evidence, that pancreatic adenocarcinoma is a heterogeneous disease, defined by a clone of SV2A expressing cells, with neuroendocrine features. The presence of this clone in patients’ tissue correlates with patient’s disease free survival and overall survival. Together with patterns of proliferation and ALDH1A1/2 co-expression, this clone seems to present a stem-cell-like behavior and is associated with chemoresistance, since it increases after chemotherapy, both in patients and primary cell lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurological disorders are a major concern in modern societies, with increasing prevalence mainly related with the higher life expectancy. Most of the current available therapeutic options can only control and ameliorate the patients’ symptoms, often be-coming refractory over time. Therapeutic breakthroughs and advances have been hampered by the lack of accurate central nervous system (CNS) models. The develop-ment of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of novel therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmentally, anatomically and physiologically) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity). The in vitro recapitulation of CNS phenotypic and functional features requires the implementation of advanced culture strategies that enable to mimic the in vivo struc-tural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. This thesis aimed at the development of novel human 3D in vitro CNS models by integrat-ing agitation-based culture systems and a wide array of characterization tools. Neural differentiation of hNSC as 3D neurospheres was explored in Chapter 2. Here, it was demonstrated that human midbrain-derived neural progenitor cells from fetal origin (hmNPC) can generate complex tissue-like structures containing functional dopaminergic neurons, as well as astrocytes and oligodendrocytes. Chapter 3 focused on the development of cellular characterization assays for cell aggregates based on light-sheet fluorescence imaging systems, which resulted in increased spatial resolu-tion both for fixed samples or live imaging. The applicability of the developed human 3D cell model for preclinical research was explored in Chapter 4, evaluating the poten-tial of a viral vector candidate for gene therapy. The efficacy and safety of helper-dependent CAV-2 (hd-CAV-2) for gene delivery in human neurons was evaluated, demonstrating increased neuronal tropism, efficient transgene expression and minimal toxicity. The potential of human 3D in vitro CNS models to mimic brain functions was further addressed in Chapter 5. Exploring the use of 13C-labeled substrates and Nucle-ar Magnetic Resonance (NMR) spectroscopy tools, neural metabolic signatures were evaluated showing lineage-specific metabolic specialization and establishment of neu-ron-astrocytic shuttles upon differentiation. Chapter 6 focused on transferring the knowledge and strategies described in the previous chapters for the implementation of a scalable and robust process for the 3D differentiation of hNSC derived from human induced pluripotent stem cells (hiPSC). Here, software-controlled perfusion stirred-tank bioreactors were used as technological system to sustain cell aggregation and dif-ferentiation. The work developed in this thesis provides practical and versatile new in vitro ap-proaches to model the human brain. Furthermore, the culture strategies described herein can be further extended to other sources of neural phenotypes, including pa-tient-derived hiPSC. The combination of this 3D culture strategy with the implemented characterization methods represents a powerful complementary tool applicable in the drug discovery, toxicology and disease modeling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

RESUMO: A reprogramação celular permite que uma célula somática seja reprogramada para outra célula diferente através da expressão forçada de factores de transcrição (FTs) específicos de determinada linhagem celular, e constitui uma área de investigação emergente nos últimos anos. As células somáticas podem ser experimentalmente manipuladas de modo a obter células estaminais pluripotentes induzidas (CEPi), ou convertidas directamente noutro tipo de célula somática. Estas descobertas inovadoras oferecem oportunidades promissoras para o desenvolvimento de novas terapias de substituição celular e modelos de doença, funcionando também como ferramentas valiosas para o estudo dos mecanismos moleculares que estabelecem a identidade celular e regulam os processos de desenvolvimento. Existem várias doenças degenerativas hereditárias e adquiridas da retina que causam deficiência visual devido a uma disfunção no tecido de suporte da retina, o epitélio pigmentar da retina (EPR). Uma destas doenças é a Coroideremia (CHM), uma doença hereditária monogénica ligada ao cromossoma X causada por mutações que implicam a perda de função duma proteína com funções importantes na regulação do tráfico intracelular. A CHM é caracterizada pela degenerescência progressiva do EPR, assim como dos foto-receptores e da coróide. Resultados experimentais sugerem que o EPR desempenha um papel importante na patogénese da CHM, o que parece indicar uma possível vantagem terapêutica na substituição do EPR nos doentes com CHM. Por outro lado, existe uma lacuna em termos de modelos in vitro de EPR para estudar a CHM, o que pode explicar o ainda desconhecimento dos mecanismos moleculares que explicam a patogénese desta doença. Assim, este trabalho focou-se principalmente na exploração das potencialidades das técnicas de reprogramação celular no contexto das doenças de degenerescência da retina, em particular no caso da CHM. Células de murganho de estirpe selvagem, bem como células derivadas de um ratinho modelo de knockout condicional de Chm, foram convertidos com sucesso em CEPi recorrendo a um sistema lentiviral induzido que permite a expressão forçada dos 4 factores clássicos de reprogramação, a saber Oct4, Sox2, Klf4 e c-Myc. Estas células mostraram ter equivalência morfológica, molecular e funcional a células estaminais embrionárias (CES). As CEPi obtidas foram seguidamente submetidas a protocolos de diferenciação com o objectivo final de obter células do EPR. Os resultados promissores obtidos revelam a possibilidade de gerar um valioso modelo de EPR-CHM para estudos in vitro. Em alternativa, a conversão directa de linhagens partindo de fibroblastos para obter células do EPR foi também abordada. Uma vasta gama de ferramentas moleculares foi gerada de modo a implementar uma estratégia mediada por FTs-chave, seleccionados devido ao seu papel fundamental no desenvolvimento embrionário e especificação do EPR. Conjuntos de 10 ou menos FTs foram usados para transduzir fibroblastos, que adquiriram morfologia pigmentada e expressão de alguns marcadores específicos do EPR. Adicionalmente, observou-se a activação de regiões promotoras de genes específicos de EPR, indicando que a identidade transcricional das células foi alterada no sentido pretendido. Em conclusão, avanços significativos foram atingidos no sentido da implementação de tecnologias de reprogramação celular já estabelecidas, bem como na concepção de novas estratégias inovadoras. Metodologias de reprogramação, quer para pluripotência, quer via conversão directa, foram aplicadas com o objectivo final de gerar células do EPR. O trabalho aqui descrito abre novos caminhos para o estabelecimento de terapias de substituição celular e, de uma maneira mais directa, levanta a possibilidade de modelar doenças degenerativas da retina com disfunção do EPR numa placa de petri, em particular no caso da CHM.---------------ABSTRACT: Cellular reprogramming is an emerging research field in which a somatic cell is reprogrammed into a different cell type by forcing the expression of lineage-specific transcription factors (TFs). Cellular identities can be manipulated using experimental techniques with the attainment of pluripotency properties and the generation of induced Pluripotent Stem (iPS) cells, or the direct conversion of one somatic cell into another somatic cell type. These pioneering discoveries offer new unprecedented opportunities for the establishment of novel cell-based therapies and disease models, as well as serving as valuable tools for the study of molecular mechanisms governing cell fate establishment and developmental processes. Several retinal degenerative disorders, inherited and acquired, lead to visual impairment due to an underlying dysfunction of the support cells of the retina, the retinal pigment epithelium (RPE). Choroideremia (CHM), an X-linked monogenic disease caused by a loss of function mutation in a key regulator of intracellular trafficking, is characterized by a progressive degeneration of the RPE and other components of the retina, such as the photoreceptors and the choroid. Evidence suggest that RPE plays an important role in CHM pathogenesis, thus implying that regenerative approaches aiming at rescuing RPE function may be of great benefit for CHM patients. Additionally, lack of appropriate in vitro models has contributed to the still poorly-characterized molecular events in the base of CHM degenerative process. Therefore, the main focus of this work was to explore the potential applications of cellular reprogramming technology in the context of RPE-related retinal degenerations. The generation of mouse iPS cells was established and optimized using an inducible lentiviral system to force the expression of the classic set of TFs, namely Oct4, Sox2, Klf4 and c-Myc. Wild-type cells, as well as cells derived from a conditional knockout (KO) mouse model of Chm, were successfully converted into a pluripotent state, that displayed morphology, molecular and functional equivalence to Embryonic Stem (ES) cells. Generated iPS cells were then subjected to differentiation protocols towards the attainment of a RPE cell fate, with promising results highlighting the possibility of generating a valuable Chm-RPE in vitro model. In alternative, direct lineage conversion of fibroblasts into RPE-like cells was also tackled. A TF-mediated approach was implemented after the generation of a panoply of molecular tools needed for such studies. After transduction with pools of 10 or less TFs, selected for their key role on RPE developmental process and specification, fibroblasts acquired a pigmented morphology and expression of some RPE-specific markers. Additionally, promoter regions of RPE-specific genes were activated indicating that the transcriptional identity of the cells was being altered into the pursued cell fate. In conclusion, highly significant progress was made towards the implementation of already established cellular reprogramming technologies, as well as the designing of new innovative ones. Reprogramming into pluripotency and lineage conversion methodologies were applied to ultimately generate RPE cells. These studies open new avenues for the establishment of cell replacement therapies and, more straightforwardly,raise the possibility of modelling retinal degenerations with underlying RPE defects in apetri dish, particularly CHM.